Submission #1069622

# Submission time Handle Problem Language Result Execution time Memory
1069622 2024-08-22T07:18:30 Z GrindMachine Tricks of the Trade (CEOI23_trade) C++17
10 / 100
8000 ms 21372 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
 
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
 
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
 
template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}
 
template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}
 
#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif
 
/*
 
refs:
https://codeforces.com/blog/entry/98663 (max+ convolution tutorial)
https://judge.yosupo.jp/submission/166484 (max+ convolution implementation) 
 
*/
 
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

vector<pll> max_conv(vector<ll> a, vector<pll> b){
    // a = concave, b = arbitrary
    ll n = sz(a), m = sz(b);
    vector<pll> res(n+m-1,{-inf2,-inf2});
    rep(i,n){
        rep(j,m){
            amax(res[i+j],{b[j].ff+a[i],b[j].ss});
        }
    }

    return res;

    // vector<ll> res(n+m-1,-inf2);

    // auto go = [&](ll l, ll r, ll optl, ll optr, auto &&go) -> void{
    //     if(l > r) return;
    //     ll mid = (l+r) >> 1;
    //     ll best = -inf2, optm = -1;
    //     for(int j = optl; j <= optr; ++j){
    //         ll i = mid-j;
    //         if(i >= 0 and i < n){
    //             ll val = a[i]+b[j];
    //             if(val > best){
    //                 best = val;
    //                 optm = j;
    //             }
    //         }
    //     }

    //     res[mid] = best;
    //     go(l,mid-1,optl,optm,go);
    //     go(mid+1,r,optm,optr,go);
    // };

    // go(0,n+m-2,0,m-1,go);
    // return res;
}

void solve(int test_case)
{
    ll n,k; cin >> n >> k;
    vector<ll> a(n+5), b(n+5);
    rep1(i,n) cin >> a[i];
    rep1(i,n) cin >> b[i];    
 
    ll ans = -inf2;
    vector<pll> segs;

    auto upd = [&](ll l, ll r, ll v){
        if(v > ans){
            ans = v;
            segs.clear();
            segs.pb({l,r});
        }
        else if(v == ans){
            segs.pb({l,r});
        }
    };

    auto go = [&](ll l, ll r, auto &&go) -> pair<vector<pll>,vector<pll>>{
        if(l > r) return {{{0,0}},{{0,0}}};
        if(l == r){
            vector<pll> v = {{0,0},{-a[l]+b[l],1}};
            return {v,v};
        }
    
        ll mid = (l+r) >> 1;
        auto [lp,ls] = go(l,mid,go);
        auto [rp,rs] = go(mid+1,r,go);
        ll siz = r-l+1;
 
        vector<pll> cp(siz+1,{-inf2,-inf2}), cs(siz+1,{-inf2,-inf2});
        rep(i,sz(lp)) amax(cp[i],lp[i]);
        rep(i,sz(rs)) amax(cs[i],rs[i]);
 
        {
            vector<ll> vals;
            ll sum = 0;
            for(int i = l; i <= mid; ++i){
                sum -= a[i];
                vals.pb(b[i]);
            }
 
            sort(rall(vals));
            vals.insert(vals.begin(),sum);
            rep1(i,sz(vals)-1) vals[i] += vals[i-1];

            auto res = max_conv(vals,rp);
            rep(i,sz(res)) res[i].ss += mid-l+1;
            rep(i,sz(res)) amax(cp[i],res[i]);
        }
 
        {
            vector<ll> vals;
            ll sum = 0;
            for(int i = mid+1; i <= r; ++i){
                sum -= a[i];
                vals.pb(b[i]);
            }
 
            sort(rall(vals));
            vals.insert(vals.begin(),sum);
            rep1(i,sz(vals)-1) vals[i] += vals[i-1];

            auto res = max_conv(vals,ls);
            rep(i,sz(res)) res[i].ss += r-mid;
            rep(i,sz(res)) amax(cs[i],res[i]);
        }
 
        if(k < sz(cp)) upd(l,l+cp[k].ss-1,cp[k].ff);
        if(k < sz(cs)) upd(r-cs[k].ss+1,r,cs[k].ff);
 
        rep(j,sz(ls)){
            ll p = k-j;
            if(p >= 0 and p < sz(rp)){
                ll lx = mid-ls[j].ss+1;
                ll rx = mid+1+rp[p].ss-1;
                ll val = ls[j].ff+rp[p].ff;
                upd(mid-ls[j].ss+1,mid+1+rp[p].ss-1,ls[j].ff+rp[p].ff);
            }
        }
    
        rep1(i,sz(cp)-1) assert(cp[i].ss >= cp[i-1].ss);
        rep1(i,sz(cs)-1) assert(cs[i].ss >= cs[i-1].ss);

        return {cp,cs};
    };

    go(1,n,go);
    cout << ans << endl;
}
 
int main()
{
    fastio;
 
    int t = 1;
    // cin >> t;
 
    rep1(i, t) {
        solve(i);
    }
 
    return 0;
}

Compilation message

trade.cpp: In instantiation of 'solve(int)::<lambda(ll, ll, auto:23&&)> [with auto:23 = solve(int)::<lambda(ll, ll, auto:23&&)>&; ll = long long int]':
trade.cpp:190:14:   required from here
trade.cpp:177:20: warning: unused variable 'lx' [-Wunused-variable]
  177 |                 ll lx = mid-ls[j].ss+1;
      |                    ^~
trade.cpp:178:20: warning: unused variable 'rx' [-Wunused-variable]
  178 |                 ll rx = mid+1+rp[p].ss-1;
      |                    ^~
trade.cpp:179:20: warning: unused variable 'val' [-Wunused-variable]
  179 |                 ll val = ls[j].ff+rp[p].ff;
      |                    ^~~
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 344 KB Partially correct
2 Partially correct 0 ms 348 KB Partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 0 ms 344 KB Partially correct
2 Partially correct 0 ms 348 KB Partially correct
3 Partially correct 1 ms 348 KB Partially correct
4 Partially correct 1 ms 452 KB Partially correct
5 Partially correct 1 ms 348 KB Partially correct
6 Partially correct 0 ms 348 KB Partially correct
7 Partially correct 0 ms 348 KB Partially correct
8 Partially correct 0 ms 348 KB Partially correct
9 Partially correct 1 ms 344 KB Partially correct
10 Partially correct 0 ms 348 KB Partially correct
11 Partially correct 1 ms 348 KB Partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 0 ms 344 KB Partially correct
2 Partially correct 0 ms 348 KB Partially correct
3 Partially correct 1 ms 348 KB Partially correct
4 Partially correct 1 ms 452 KB Partially correct
5 Partially correct 1 ms 348 KB Partially correct
6 Partially correct 0 ms 348 KB Partially correct
7 Partially correct 0 ms 348 KB Partially correct
8 Partially correct 0 ms 348 KB Partially correct
9 Partially correct 1 ms 344 KB Partially correct
10 Partially correct 0 ms 348 KB Partially correct
11 Partially correct 1 ms 348 KB Partially correct
12 Partially correct 1 ms 348 KB Partially correct
13 Partially correct 0 ms 348 KB Partially correct
14 Partially correct 1 ms 348 KB Partially correct
15 Partially correct 1 ms 348 KB Partially correct
16 Partially correct 1 ms 348 KB Partially correct
17 Partially correct 0 ms 348 KB Partially correct
18 Partially correct 1 ms 348 KB Partially correct
19 Partially correct 1 ms 348 KB Partially correct
20 Partially correct 1 ms 348 KB Partially correct
21 Partially correct 1 ms 348 KB Partially correct
22 Partially correct 0 ms 348 KB Partially correct
23 Partially correct 30 ms 1360 KB Partially correct
24 Partially correct 36 ms 1184 KB Partially correct
25 Partially correct 37 ms 1104 KB Partially correct
26 Partially correct 36 ms 1112 KB Partially correct
27 Partially correct 34 ms 1132 KB Partially correct
28 Partially correct 31 ms 1144 KB Partially correct
29 Partially correct 35 ms 1116 KB Partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 0 ms 348 KB Partially correct
2 Execution timed out 8089 ms 21372 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Partially correct 0 ms 348 KB Partially correct
2 Execution timed out 8089 ms 21372 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 344 KB Partially correct
2 Partially correct 0 ms 348 KB Partially correct
3 Partially correct 0 ms 344 KB Partially correct
4 Partially correct 0 ms 348 KB Partially correct
5 Partially correct 1 ms 348 KB Partially correct
6 Partially correct 1 ms 452 KB Partially correct
7 Partially correct 1 ms 348 KB Partially correct
8 Partially correct 0 ms 348 KB Partially correct
9 Partially correct 0 ms 348 KB Partially correct
10 Partially correct 0 ms 348 KB Partially correct
11 Partially correct 1 ms 344 KB Partially correct
12 Partially correct 0 ms 348 KB Partially correct
13 Partially correct 1 ms 348 KB Partially correct
14 Partially correct 1 ms 348 KB Partially correct
15 Partially correct 0 ms 348 KB Partially correct
16 Partially correct 1 ms 348 KB Partially correct
17 Partially correct 1 ms 348 KB Partially correct
18 Partially correct 1 ms 348 KB Partially correct
19 Partially correct 0 ms 348 KB Partially correct
20 Partially correct 1 ms 348 KB Partially correct
21 Partially correct 1 ms 348 KB Partially correct
22 Partially correct 1 ms 348 KB Partially correct
23 Partially correct 1 ms 348 KB Partially correct
24 Partially correct 0 ms 348 KB Partially correct
25 Partially correct 30 ms 1360 KB Partially correct
26 Partially correct 36 ms 1184 KB Partially correct
27 Partially correct 37 ms 1104 KB Partially correct
28 Partially correct 36 ms 1112 KB Partially correct
29 Partially correct 34 ms 1132 KB Partially correct
30 Partially correct 31 ms 1144 KB Partially correct
31 Partially correct 35 ms 1116 KB Partially correct
32 Partially correct 0 ms 348 KB Partially correct
33 Execution timed out 8089 ms 21372 KB Time limit exceeded
34 Halted 0 ms 0 KB -