#include <bits/stdc++.h>
#include "factories.h"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define rep(i, n) for(int i = 1; (i) <= (n); ++i)
#define forn(i, l, r) for(int i = (l); i <= (r); ++i)
#define ford(i, r, l) for(int i = (r); i >= (l); --i)
#define FOR(i, n) for(int i = 0; i < (n); ++i)
#define FORD(i, n) for(int i = ((n) - 1); i >= 0; --i)
#define fi first
#define se second
#define pii pair<int, int>
#define pll pair<ll, ll>
#define pb push_back
#define endl "\n"
#define task "note"
#define sz(a) int(a.size())
#define C(x, y) make_pair(x, y)
#define all(a) (a).begin(), (a).end()
#define bit(i, mask) (mask >> i & 1)
template<typename T> bool maximize(T &res, const T &val) { if (res < val){ res = val; return true; }; return false; }
template<typename T> bool minimize(T &res, const T &val) { if (res > val){ res = val; return true; }; return false; }
const int Max_N = 5e5 + 3;
const int LOG = 18;
const ll INF = 1e18;
int up[Max_N][LOG + 1], tin[Max_N], tout[Max_N], timedfs = 0;
int n;
vector<pii> g[Max_N];
ll dist[Max_N];
ll dp[Max_N][2];
void dfs(int u, int p)
{
tin[u] = ++timedfs;
up[u][0] = p;
forn(j, 1, LOG) up[u][j] = up[up[u][j - 1]][j - 1];
for(auto &[v, w] : g[u])
if(v != p) dist[v] = dist[u] + w, dfs(v, u);
tout[u] = timedfs;
}
bool is_anc(int u, int v) {return tin[u] <= tin[v] && tout[v] <= tout[u];}
int lca(int u, int v)
{
if(is_anc(u, v)) return u;
if(is_anc(v, u)) return v;
ford(i, LOG, 0) if(!is_anc(up[u][i], v)) u = up[u][i];
return up[u][0];
}
void Init(int N, int A[], int B[], int C[])
{
n = N;
FOR(i, N - 1)
{
g[A[i]].pb({B[i], C[i]});
g[B[i]].pb({A[i], C[i]});
}
forn(i, 0, n - 1) dp[i][0] = dp[i][1] = INF;
dfs(0, 0);
}
int tree[Max_N];
vector<int> adj[Max_N];
ll Query(int S, int X[], int T, int Y[])
{
int cur = 0;
FOR(i, S) tree[++cur] = X[i], dp[X[i]][0] = dist[X[i]];
FOR(i, T) tree[++cur] = Y[i], dp[Y[i]][1] = dist[Y[i]];
sort(tree + 1, tree + 1 + cur, [&](const int &x, const int &y) {
return tin[x] < tin[y];
});
for(int i = cur - 1; i >= 1; --i) tree[++cur] = lca(tree[i], tree[i + 1]);
sort(tree + 1, tree + 1 + cur, [&](const int &x, const int &y) {
return tin[x] < tin[y];
});
cur = unique(tree + 1, tree + 1 + cur) - tree - 1;
stack<int> st;
rep(i, cur)
{
while(!st.empty() && tout[st.top()] < tout[tree[i]]) st.pop();
if(sz(st)) adj[st.top()].pb(tree[i]);
st.push(tree[i]);
}
ll res = INF;
ford(i, cur, 1)
{
int u = tree[i];
for(int v : adj[u])
forn(j, 0, 1)
minimize(dp[u][j], dp[v][j]);
minimize(res, dp[u][0] + dp[u][1] - 2 * dist[u]);
}
ford(i, cur, 1) dp[tree[i]][0] = dp[tree[i]][1] = INF, adj[tree[i]].clear();
return res;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
22 ms |
24412 KB |
Output is correct |
2 |
Correct |
610 ms |
42200 KB |
Output is correct |
3 |
Correct |
576 ms |
42068 KB |
Output is correct |
4 |
Correct |
571 ms |
42248 KB |
Output is correct |
5 |
Correct |
451 ms |
42580 KB |
Output is correct |
6 |
Correct |
434 ms |
42064 KB |
Output is correct |
7 |
Correct |
611 ms |
42064 KB |
Output is correct |
8 |
Correct |
580 ms |
42448 KB |
Output is correct |
9 |
Correct |
452 ms |
42580 KB |
Output is correct |
10 |
Correct |
437 ms |
42032 KB |
Output is correct |
11 |
Correct |
569 ms |
42068 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
11 ms |
24152 KB |
Output is correct |
2 |
Correct |
866 ms |
126804 KB |
Output is correct |
3 |
Correct |
1035 ms |
129012 KB |
Output is correct |
4 |
Correct |
627 ms |
127036 KB |
Output is correct |
5 |
Correct |
760 ms |
163644 KB |
Output is correct |
6 |
Correct |
1115 ms |
131152 KB |
Output is correct |
7 |
Correct |
857 ms |
63516 KB |
Output is correct |
8 |
Correct |
510 ms |
63688 KB |
Output is correct |
9 |
Correct |
413 ms |
69716 KB |
Output is correct |
10 |
Correct |
826 ms |
64816 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
22 ms |
24412 KB |
Output is correct |
2 |
Correct |
610 ms |
42200 KB |
Output is correct |
3 |
Correct |
576 ms |
42068 KB |
Output is correct |
4 |
Correct |
571 ms |
42248 KB |
Output is correct |
5 |
Correct |
451 ms |
42580 KB |
Output is correct |
6 |
Correct |
434 ms |
42064 KB |
Output is correct |
7 |
Correct |
611 ms |
42064 KB |
Output is correct |
8 |
Correct |
580 ms |
42448 KB |
Output is correct |
9 |
Correct |
452 ms |
42580 KB |
Output is correct |
10 |
Correct |
437 ms |
42032 KB |
Output is correct |
11 |
Correct |
569 ms |
42068 KB |
Output is correct |
12 |
Correct |
11 ms |
24152 KB |
Output is correct |
13 |
Correct |
866 ms |
126804 KB |
Output is correct |
14 |
Correct |
1035 ms |
129012 KB |
Output is correct |
15 |
Correct |
627 ms |
127036 KB |
Output is correct |
16 |
Correct |
760 ms |
163644 KB |
Output is correct |
17 |
Correct |
1115 ms |
131152 KB |
Output is correct |
18 |
Correct |
857 ms |
63516 KB |
Output is correct |
19 |
Correct |
510 ms |
63688 KB |
Output is correct |
20 |
Correct |
413 ms |
69716 KB |
Output is correct |
21 |
Correct |
826 ms |
64816 KB |
Output is correct |
22 |
Correct |
1606 ms |
139860 KB |
Output is correct |
23 |
Correct |
1441 ms |
141652 KB |
Output is correct |
24 |
Correct |
1800 ms |
144464 KB |
Output is correct |
25 |
Correct |
1752 ms |
147720 KB |
Output is correct |
26 |
Correct |
1775 ms |
139348 KB |
Output is correct |
27 |
Correct |
1307 ms |
171092 KB |
Output is correct |
28 |
Correct |
1046 ms |
139092 KB |
Output is correct |
29 |
Correct |
1787 ms |
137972 KB |
Output is correct |
30 |
Correct |
1768 ms |
137496 KB |
Output is correct |
31 |
Correct |
1718 ms |
138064 KB |
Output is correct |
32 |
Correct |
716 ms |
71504 KB |
Output is correct |
33 |
Correct |
572 ms |
65732 KB |
Output is correct |
34 |
Correct |
832 ms |
62012 KB |
Output is correct |
35 |
Correct |
823 ms |
61776 KB |
Output is correct |
36 |
Correct |
885 ms |
62800 KB |
Output is correct |
37 |
Correct |
918 ms |
62604 KB |
Output is correct |