/*###############################################################################################################
## Author : Kim Tae Yoon (Serendipity__) ##
###############################################################################################################*/
#include <bits/stdc++.h>
#define fastio std::ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
#define prntyes cout<<"Yes\n";
#define prntno cout<<"No\n";
using namespace std;
// mt19937_64 rng(chrono::high_resolution_clock::now().time_since_epoch().count()); // random int64 generator
typedef long long ll;
typedef unsigned long ul;
typedef unsigned long long ull;
typedef __int128 ll128;
typedef long double ld;
typedef pair<int, int> pi;
typedef pair<ll, ll> pii;
typedef complex<double> inum;
// Macros from KACTL pdf
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
typedef vector<int> vi;
typedef vector<double> vd;
const double PI = acos(-1);
const int INF = 0x3f3f3f3f;
const ll LLINF = 1000000000000000000LL;
const ll MAX = 200005; // depending on the problem
const ll MOD = 998244353; // depending on the problem
template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
typedef Point P;
T x, y;
explicit Point(T x=0, T y=0) : x(x), y(y) {}
bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
P operator+(P p) const { return P(x+p.x, y+p.y); }
P operator-(P p) const { return P(x-p.x, y-p.y); }
P operator*(T d) const { return P(x*d, y*d); }
P operator/(T d) const { return P(x/d, y/d); }
T dot(P p) const { return x*p.x + y*p.y; }
T cross(P p) const { return x*p.y - y*p.x; }
T cross(P a, P b) const { return (a-*this).cross(b-*this); }
T dist2() const { return x*x + y*y; }
double dist() const { return sqrt((double)dist2()); }
// angle to x-axis in interval [-pi, pi]
double angle() const { return atan2(y, x); }
P unit() const { return *this/dist(); } // makes dist()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate(double a) const {
return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {
return os << "(" << p.x << "," << p.y << ")"; }
};
typedef Point<ll> P;
void solve() {
ll N; cin>>N;
vector<P> A(N);
for (int i=0;i<N;i++){
ll x,y; cin>>x>>y;
A[i] = P(x,y);
}
int s = 0;
for (int i=1;i<N;i++){
if (A[i].y < A[s].y){
s = i;
}
}
swap(A[0],A[s]);
for (int i=1;i<N;i++){
A[i].x -= A[0].x;
A[i].y -= A[0].y;
}
sort(A.begin()+1, A.end(), [&](P l, P r){
if (l.cross(r) == 0){
return l.dist2() > r.dist2();
}
return l.cross(r) > 0;
});
vector<int> dp(N),ne(N,-1),in(N,-1);
for (int j=N-1;j>=1;j--){
dp[j] = 1;
P mn = A[j];
int idx = -1;
for (int i=j+1;i<N;i++){
if (mn.cross(A[i]-A[j]) < 0){
if (dp[j] < dp[i]+1){
dp[j] = dp[i]+1;
ne[j] = i;
in[j] = idx;
}
}
if (mn.cross(A[i]-A[j]) > 0){
mn = A[i]-A[j];
idx = i;
}
}
}
for (int i=1;i<N;i++){
A[i].x += A[0].x;
A[i].y += A[0].y;
}
vector<P> res;
res.push_back(A[0]);
int u = max_element(dp.begin(), dp.end()) - dp.begin();
if (dp[u] <= 1){cout<<0; return;}
cout<<2*dp[u]<<"\n";
while(1){
res.push_back(A[u]);
if (dp[u] == 1){break;}
res.push_back(A[in[u]]);
u = ne[u];
}
for (auto it:res){
cout<<it.x<<" "<<it.y<<"\n";
}
}
int main() {
fastio;
int tc = 1;
// cin >> tc;
while (tc--) {
solve();
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
6 ms |
600 KB |
Output is correct |
2 |
Correct |
6 ms |
600 KB |
Output is correct |
3 |
Correct |
6 ms |
608 KB |
Output is correct |
4 |
Correct |
6 ms |
604 KB |
Output is correct |
5 |
Correct |
6 ms |
604 KB |
Output is correct |
6 |
Correct |
6 ms |
608 KB |
Output is correct |
7 |
Correct |
8 ms |
600 KB |
Output is correct |
8 |
Correct |
6 ms |
616 KB |
Output is correct |
9 |
Correct |
7 ms |
612 KB |
Output is correct |
10 |
Correct |
6 ms |
604 KB |
Output is correct |
11 |
Correct |
6 ms |
600 KB |
Output is correct |
12 |
Correct |
6 ms |
600 KB |
Output is correct |
13 |
Correct |
6 ms |
604 KB |
Output is correct |
14 |
Correct |
6 ms |
604 KB |
Output is correct |
15 |
Correct |
6 ms |
604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Incorrect |
0 ms |
348 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Incorrect |
0 ms |
348 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
6 ms |
600 KB |
Output is correct |
2 |
Correct |
6 ms |
600 KB |
Output is correct |
3 |
Correct |
6 ms |
608 KB |
Output is correct |
4 |
Correct |
6 ms |
604 KB |
Output is correct |
5 |
Correct |
6 ms |
604 KB |
Output is correct |
6 |
Correct |
6 ms |
608 KB |
Output is correct |
7 |
Correct |
8 ms |
600 KB |
Output is correct |
8 |
Correct |
6 ms |
616 KB |
Output is correct |
9 |
Correct |
7 ms |
612 KB |
Output is correct |
10 |
Correct |
6 ms |
604 KB |
Output is correct |
11 |
Correct |
6 ms |
600 KB |
Output is correct |
12 |
Correct |
6 ms |
600 KB |
Output is correct |
13 |
Correct |
6 ms |
604 KB |
Output is correct |
14 |
Correct |
6 ms |
604 KB |
Output is correct |
15 |
Correct |
6 ms |
604 KB |
Output is correct |
16 |
Correct |
0 ms |
348 KB |
Output is correct |
17 |
Correct |
0 ms |
348 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Incorrect |
0 ms |
348 KB |
Output isn't correct |
20 |
Halted |
0 ms |
0 KB |
- |