Submission #1061613

# Submission time Handle Problem Language Result Execution time Memory
1061613 2024-08-16T11:13:56 Z TheQuantiX Fountain Parks (IOI21_parks) C++17
30 / 100
670 ms 62140 KB
#include<bits/stdc++.h>
#include "parks.h"

using namespace std;
using ll = long long;

ll n, m, q, k, x, y, a, b, c;

struct dsu {
    ll n;
    vector<ll> par;
    vector<ll> sz;
    
    dsu(ll N) : n(N) {
        par.resize(n);
        sz.resize(n);
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }

    ll find_p(ll x) {
        if (par[x] == x) {
            return x;
        }
        ll p = find_p(par[x]);
        par[x] = p;
        return p;
    }

    void join(ll x, ll y) {
        x = find_p(x);
        y = find_p(y);
        if (x == y) {
            return;
        }
        if (sz[y] > sz[x]) {
            swap(x, y);
        }
        par[y] = x;
        sz[x] += sz[y];
    }
};

int construct_roads(vector<int> x, vector<int> y) {
    n = x.size();
    array< vector<int>, 4 > ans;
    if (*max_element(x.begin(), x.end()) <= 6) {
        vector< vector<ll> > v(7, vector<ll> (200001, -1));
        for (int i = 0; i < n; i++) {
            v[x[i]][y[i]] = i;
        }
        dsu d(n);
        for (int i = 2; i < 200000; i += 2) {
            if (v[2][i] != -1 && v[2][i + 2] != -1 && d.find_p(v[2][i]) != d.find_p(v[2][i + 2])) {
                d.join(v[2][i], v[2][i + 2]);
                ans[0].push_back(v[2][i]);
                ans[1].push_back(v[2][i + 2]);
                ans[2].push_back(1);
                ans[3].push_back(i + 1);
            }
            if (v[6][i] != -1 && v[6][i + 2] != -1 && d.find_p(v[6][i]) != d.find_p(v[6][i + 2])) {
                d.join(v[6][i], v[6][i + 2]);
                ans[0].push_back(v[6][i]);
                ans[1].push_back(v[6][i + 2]);
                ans[2].push_back(7);
                ans[3].push_back(i + 1);
            }
        }
        vector< pair< ll, pair<ll, ll> > > vec;
        for (int i = 2; i < 200000; i += 2) {
            if (v[4][i] != -1 && v[4][i + 2] != -1 && d.find_p(v[4][i]) != d.find_p(v[4][i + 2])) {
                d.join(v[4][i], v[4][i + 2]);
                vec.push_back({i + 1, {v[4][i], v[4][i + 2]}});
            }
        }
        for (int i = 2; i <= 200000; i += 2) {
            if (v[4][i] != -1 && v[2][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[2][i])) {
                d.join(v[4][i], v[2][i]);
                vec.push_back({i, {v[4][i], v[2][i]}});
            }
            if (v[4][i] != -1 && v[6][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[6][i])) {
                d.join(v[4][i], v[6][i]);
                vec.push_back({i, {v[4][i], v[6][i]}});
            }
        }
        set< pair<ll, ll> > st;
        sort(vec.begin(), vec.end());
        for (auto i : vec) {
            if (i.first % 2 == 0) {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first - 1);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first + 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first + 1);
                }
            }
            else {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
            }
        }
        if (d.sz[d.find_p(0)] != n) {
            return 0;
        }
        build(ans[0], ans[1], ans[2], ans[3]);
        return 1;
    }
    map< pair<ll, ll>, ll > pts;
    for (int i = 0; i < n; i++) {
        pts[{x[i], y[i]}] = i;
    }
    dsu d(n);
    vector< pair< pair<ll, ll>, pair<ll, ll> > > vec;
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i], y[i] - 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] - 2}])) {
            d.join(i, pts[{x[i], y[i] - 2}]);
            vec.push_back({{x[i], y[i] - 1}, {i, pts[{x[i], y[i] - 2}]}});
        }
        if (pts.count({x[i], y[i] + 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] + 2}])) {
            d.join(i, pts[{x[i], y[i] + 2}]);
            vec.push_back({{x[i], y[i] + 1}, {i, pts[{x[i], y[i] + 2}]}});
        }
    }
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i] - 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] - 2, y[i]}])) {
            d.join(i, pts[{x[i] - 2, y[i]}]);
            vec.push_back({{x[i] - 1, y[i]}, {i, pts[{x[i] - 2, y[i]}]}});
        }
        if (pts.count({x[i] + 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] + 2, y[i]}])) {
            d.join(i, pts[{x[i] + 2, y[i]}]);
            vec.push_back({{x[i] + 1, y[i]}, {i, pts[{x[i] + 2, y[i]}]}});
        }
    }
    set< pair<ll, ll> > st;
    map< pair<ll, ll>, ll > occ;
    sort(vec.begin(), vec.end());
    for (auto i : vec) {
        if (i.first.first % 2 == 0) {
            if (!st.count({i.first.first - 1, i.first.second})) {
                st.insert({i.first.first - 1, i.first.second});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first - 1);
                ans[3].push_back(i.first.second);
                occ[{ans[2][ans[2].size() - 1], ans[3][ans[3].size() - 1]}] = ans[0].size() - 1;
            }
            else if (!st.count({i.first.first + 1, i.first.second})) {
                st.insert({i.first.first + 1, i.first.second});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first + 1);
                ans[3].push_back(i.first.second);
                occ[{ans[2][ans[2].size() - 1], ans[3][ans[3].size() - 1]}] = ans[0].size() - 1;
            }
            else {
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                pair<ll, ll> p = {i.first.first + 1, i.first.second};
                ll idx = ans[0].size() - 1;
                ans[2].push_back(-1);
                ans[3].push_back(-1);
                while (st.count(p)) {
                    pair<ll, ll> p1 = {x[occ[p]], y[occ[p]]};
                    pair<ll, ll> p2 = {p1.first + (p1.first - p.first), p1.second + (p1.second - p.second)};
                    swap(idx, occ[p]);
                    swap(ans[2][idx], ans[2][occ[p]]);
                    swap(ans[3][idx], ans[3][occ[p]]);
                    p = p2;
                }
                ans[2][idx] = p.first;
                ans[3][idx] = p.second;
                occ[{ans[2][idx], ans[3][idx]}] = idx;
            }
        }
        else {
            if (!st.count({i.first.first, i.first.second - 1})) {
                st.insert({i.first.first, i.first.second - 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first);
                ans[3].push_back(i.first.second - 1);
                occ[{ans[2][ans[2].size() - 1], ans[3][ans[3].size() - 1]}] = ans[0].size() - 1;
            }
            else if (!st.count({i.first.first, i.first.second + 1})) {
                st.insert({i.first.first, i.first.second + 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first);
                ans[3].push_back(i.first.second + 1);
                occ[{ans[2][ans[2].size() - 1], ans[3][ans[3].size() - 1]}] = ans[0].size() - 1;
            }
            else {
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                pair<ll, ll> p = {i.first.first, i.first.second + 1};
                ll idx = ans[0].size() - 1;
                ans[2].push_back(-1);
                ans[3].push_back(-1);
                while (st.count(p)) {
                    pair<ll, ll> p1 = {x[occ[p]], y[occ[p]]};
                    pair<ll, ll> p2 = {p1.first + (p1.first - p.first), p1.second + (p1.second - p.second)};
                    swap(idx, occ[p]);
                    swap(ans[2][idx], ans[2][occ[p]]);
                    swap(ans[3][idx], ans[3][occ[p]]);
                    p = p2;
                }
                ans[2][idx] = p.first;
                ans[3][idx] = p.second;
                occ[{ans[2][idx], ans[3][idx]}] = idx;
            }
        }
    }
    if (d.sz[d.find_p(0)] != n) {
        return 0;
    }
    build(ans[0], ans[1], ans[2], ans[3]);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 7 ms 12888 KB Output is correct
2 Correct 9 ms 12888 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 5 ms 12880 KB Output is correct
5 Correct 7 ms 12892 KB Output is correct
6 Correct 8 ms 12892 KB Output is correct
7 Correct 5 ms 12892 KB Output is correct
8 Correct 5 ms 12792 KB Output is correct
9 Correct 49 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 21 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 12 ms 14080 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 6 ms 12892 KB Output is correct
16 Correct 42 ms 19520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 12888 KB Output is correct
2 Correct 9 ms 12888 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 5 ms 12880 KB Output is correct
5 Correct 7 ms 12892 KB Output is correct
6 Correct 8 ms 12892 KB Output is correct
7 Correct 5 ms 12892 KB Output is correct
8 Correct 5 ms 12792 KB Output is correct
9 Correct 49 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 21 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 12 ms 14080 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 6 ms 12892 KB Output is correct
16 Correct 42 ms 19520 KB Output is correct
17 Correct 8 ms 12888 KB Output is correct
18 Correct 8 ms 12828 KB Output is correct
19 Correct 5 ms 12892 KB Output is correct
20 Correct 5 ms 12944 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 8 ms 12892 KB Output is correct
23 Correct 110 ms 36148 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 7 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12828 KB Output is correct
28 Correct 44 ms 21116 KB Output is correct
29 Correct 61 ms 25884 KB Output is correct
30 Correct 85 ms 31028 KB Output is correct
31 Correct 126 ms 36536 KB Output is correct
32 Correct 5 ms 12892 KB Output is correct
33 Correct 6 ms 12760 KB Output is correct
34 Correct 5 ms 12884 KB Output is correct
35 Correct 6 ms 12888 KB Output is correct
36 Correct 5 ms 12924 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 7 ms 12888 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 5 ms 12892 KB Output is correct
42 Correct 6 ms 12892 KB Output is correct
43 Correct 6 ms 12936 KB Output is correct
44 Correct 9 ms 12888 KB Output is correct
45 Correct 50 ms 25056 KB Output is correct
46 Correct 79 ms 31540 KB Output is correct
47 Correct 73 ms 32056 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 12888 KB Output is correct
2 Correct 9 ms 12888 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 5 ms 12880 KB Output is correct
5 Correct 7 ms 12892 KB Output is correct
6 Correct 8 ms 12892 KB Output is correct
7 Correct 5 ms 12892 KB Output is correct
8 Correct 5 ms 12792 KB Output is correct
9 Correct 49 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 21 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 12 ms 14080 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 6 ms 12892 KB Output is correct
16 Correct 42 ms 19520 KB Output is correct
17 Correct 8 ms 12888 KB Output is correct
18 Correct 8 ms 12828 KB Output is correct
19 Correct 5 ms 12892 KB Output is correct
20 Correct 5 ms 12944 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 8 ms 12892 KB Output is correct
23 Correct 110 ms 36148 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 7 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12828 KB Output is correct
28 Correct 44 ms 21116 KB Output is correct
29 Correct 61 ms 25884 KB Output is correct
30 Correct 85 ms 31028 KB Output is correct
31 Correct 126 ms 36536 KB Output is correct
32 Correct 5 ms 12892 KB Output is correct
33 Correct 6 ms 12760 KB Output is correct
34 Correct 5 ms 12884 KB Output is correct
35 Correct 6 ms 12888 KB Output is correct
36 Correct 5 ms 12924 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 7 ms 12888 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 5 ms 12892 KB Output is correct
42 Correct 6 ms 12892 KB Output is correct
43 Correct 6 ms 12936 KB Output is correct
44 Correct 9 ms 12888 KB Output is correct
45 Correct 50 ms 25056 KB Output is correct
46 Correct 79 ms 31540 KB Output is correct
47 Correct 73 ms 32056 KB Output is correct
48 Correct 7 ms 12888 KB Output is correct
49 Correct 7 ms 12888 KB Output is correct
50 Correct 8 ms 12892 KB Output is correct
51 Correct 8 ms 12892 KB Output is correct
52 Correct 6 ms 12888 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 6 ms 12892 KB Output is correct
55 Correct 113 ms 34448 KB Output is correct
56 Correct 6 ms 12892 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 12 ms 12892 KB Output is correct
59 Correct 12 ms 12892 KB Output is correct
60 Correct 43 ms 22260 KB Output is correct
61 Correct 59 ms 26944 KB Output is correct
62 Correct 74 ms 29404 KB Output is correct
63 Correct 92 ms 32820 KB Output is correct
64 Correct 7 ms 12892 KB Output is correct
65 Correct 6 ms 12812 KB Output is correct
66 Correct 6 ms 12916 KB Output is correct
67 Correct 72 ms 27580 KB Output is correct
68 Correct 69 ms 27704 KB Output is correct
69 Correct 69 ms 27700 KB Output is correct
70 Correct 7 ms 12888 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 48 ms 23712 KB Output is correct
73 Correct 71 ms 31284 KB Output is correct
74 Correct 96 ms 36284 KB Output is correct
75 Correct 82 ms 30516 KB Output is correct
76 Correct 76 ms 27796 KB Output is correct
77 Correct 7 ms 12892 KB Output is correct
78 Correct 7 ms 12884 KB Output is correct
79 Correct 47 ms 23360 KB Output is correct
80 Correct 70 ms 30520 KB Output is correct
81 Correct 114 ms 35128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 12888 KB Output is correct
2 Correct 9 ms 12888 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 5 ms 12880 KB Output is correct
5 Correct 7 ms 12892 KB Output is correct
6 Correct 8 ms 12892 KB Output is correct
7 Correct 5 ms 12892 KB Output is correct
8 Correct 5 ms 12792 KB Output is correct
9 Correct 49 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 21 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 12 ms 14080 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 6 ms 12892 KB Output is correct
16 Correct 42 ms 19520 KB Output is correct
17 Correct 0 ms 344 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 531 ms 60164 KB Output is correct
21 Correct 548 ms 61228 KB Output is correct
22 Correct 549 ms 62140 KB Output is correct
23 Correct 431 ms 52856 KB Output is correct
24 Correct 204 ms 18996 KB Output is correct
25 Correct 521 ms 54340 KB Output is correct
26 Correct 429 ms 53692 KB Output is correct
27 Correct 503 ms 60088 KB Output is correct
28 Correct 515 ms 61308 KB Output is correct
29 Correct 600 ms 60780 KB Output is correct
30 Correct 670 ms 60920 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Incorrect 28 ms 4604 KB Tree (a[631], b[631]) = (186115, 20819) is not adjacent to edge between u[631]=4162 @(185724, 20412) and v[631]=10659 @(185724, 20414)
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 12888 KB Output is correct
2 Correct 9 ms 12888 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 5 ms 12880 KB Output is correct
5 Correct 7 ms 12892 KB Output is correct
6 Correct 8 ms 12892 KB Output is correct
7 Correct 5 ms 12892 KB Output is correct
8 Correct 5 ms 12792 KB Output is correct
9 Correct 49 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 21 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 12 ms 14080 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 6 ms 12892 KB Output is correct
16 Correct 42 ms 19520 KB Output is correct
17 Correct 536 ms 60688 KB Output is correct
18 Correct 532 ms 60092 KB Output is correct
19 Correct 580 ms 61492 KB Output is correct
20 Correct 577 ms 60504 KB Output is correct
21 Correct 485 ms 53740 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Incorrect 67 ms 9516 KB Tree (a[1150], b[1150]) = (186745, 22077) is not adjacent to edge between u[1150]=9213 @(185186, 20678) and v[1150]=18399 @(185186, 20680)
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 12888 KB Output is correct
2 Correct 9 ms 12888 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 5 ms 12880 KB Output is correct
5 Correct 7 ms 12892 KB Output is correct
6 Correct 8 ms 12892 KB Output is correct
7 Correct 5 ms 12892 KB Output is correct
8 Correct 5 ms 12792 KB Output is correct
9 Correct 49 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 21 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 12 ms 14080 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 6 ms 12892 KB Output is correct
16 Correct 42 ms 19520 KB Output is correct
17 Correct 8 ms 12888 KB Output is correct
18 Correct 8 ms 12828 KB Output is correct
19 Correct 5 ms 12892 KB Output is correct
20 Correct 5 ms 12944 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 8 ms 12892 KB Output is correct
23 Correct 110 ms 36148 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 7 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12828 KB Output is correct
28 Correct 44 ms 21116 KB Output is correct
29 Correct 61 ms 25884 KB Output is correct
30 Correct 85 ms 31028 KB Output is correct
31 Correct 126 ms 36536 KB Output is correct
32 Correct 5 ms 12892 KB Output is correct
33 Correct 6 ms 12760 KB Output is correct
34 Correct 5 ms 12884 KB Output is correct
35 Correct 6 ms 12888 KB Output is correct
36 Correct 5 ms 12924 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 7 ms 12888 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 5 ms 12892 KB Output is correct
42 Correct 6 ms 12892 KB Output is correct
43 Correct 6 ms 12936 KB Output is correct
44 Correct 9 ms 12888 KB Output is correct
45 Correct 50 ms 25056 KB Output is correct
46 Correct 79 ms 31540 KB Output is correct
47 Correct 73 ms 32056 KB Output is correct
48 Correct 7 ms 12888 KB Output is correct
49 Correct 7 ms 12888 KB Output is correct
50 Correct 8 ms 12892 KB Output is correct
51 Correct 8 ms 12892 KB Output is correct
52 Correct 6 ms 12888 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 6 ms 12892 KB Output is correct
55 Correct 113 ms 34448 KB Output is correct
56 Correct 6 ms 12892 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 12 ms 12892 KB Output is correct
59 Correct 12 ms 12892 KB Output is correct
60 Correct 43 ms 22260 KB Output is correct
61 Correct 59 ms 26944 KB Output is correct
62 Correct 74 ms 29404 KB Output is correct
63 Correct 92 ms 32820 KB Output is correct
64 Correct 7 ms 12892 KB Output is correct
65 Correct 6 ms 12812 KB Output is correct
66 Correct 6 ms 12916 KB Output is correct
67 Correct 72 ms 27580 KB Output is correct
68 Correct 69 ms 27704 KB Output is correct
69 Correct 69 ms 27700 KB Output is correct
70 Correct 7 ms 12888 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 48 ms 23712 KB Output is correct
73 Correct 71 ms 31284 KB Output is correct
74 Correct 96 ms 36284 KB Output is correct
75 Correct 82 ms 30516 KB Output is correct
76 Correct 76 ms 27796 KB Output is correct
77 Correct 7 ms 12892 KB Output is correct
78 Correct 7 ms 12884 KB Output is correct
79 Correct 47 ms 23360 KB Output is correct
80 Correct 70 ms 30520 KB Output is correct
81 Correct 114 ms 35128 KB Output is correct
82 Correct 0 ms 344 KB Output is correct
83 Correct 0 ms 348 KB Output is correct
84 Correct 0 ms 348 KB Output is correct
85 Correct 531 ms 60164 KB Output is correct
86 Correct 548 ms 61228 KB Output is correct
87 Correct 549 ms 62140 KB Output is correct
88 Correct 431 ms 52856 KB Output is correct
89 Correct 204 ms 18996 KB Output is correct
90 Correct 521 ms 54340 KB Output is correct
91 Correct 429 ms 53692 KB Output is correct
92 Correct 503 ms 60088 KB Output is correct
93 Correct 515 ms 61308 KB Output is correct
94 Correct 600 ms 60780 KB Output is correct
95 Correct 670 ms 60920 KB Output is correct
96 Correct 0 ms 348 KB Output is correct
97 Incorrect 28 ms 4604 KB Tree (a[631], b[631]) = (186115, 20819) is not adjacent to edge between u[631]=4162 @(185724, 20412) and v[631]=10659 @(185724, 20414)
98 Halted 0 ms 0 KB -