Submission #1061466

# Submission time Handle Problem Language Result Execution time Memory
1061466 2024-08-16T09:27:52 Z TheQuantiX Fountain Parks (IOI21_parks) C++17
30 / 100
520 ms 49472 KB
#include<bits/stdc++.h>
#include "parks.h"

using namespace std;
using ll = long long;

ll n, m, q, k, x, y, a, b, c;

struct dsu {
    ll n;
    vector<ll> par;
    vector<ll> sz;
    
    dsu(ll N) : n(N) {
        par.resize(n);
        sz.resize(n);
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }

    ll find_p(ll x) {
        if (par[x] == x) {
            return x;
        }
        ll p = find_p(par[x]);
        par[x] = p;
        return p;
    }

    void join(ll x, ll y) {
        x = find_p(x);
        y = find_p(y);
        if (x == y) {
            return;
        }
        if (sz[y] > sz[x]) {
            swap(x, y);
        }
        par[y] = x;
        sz[x] += sz[y];
    }
};

int construct_roads(vector<int> x, vector<int> y) {
    n = x.size();
    array< vector<int>, 4 > ans;
    if (*max_element(x.begin(), x.end()) <= 6) {
        vector< vector<ll> > v(7, vector<ll> (200001, -1));
        for (int i = 0; i < n; i++) {
            v[x[i]][y[i]] = i;
        }
        dsu d(n);
        for (int i = 2; i < 200000; i += 2) {
            if (v[2][i] != -1 && v[2][i + 2] != -1 && d.find_p(v[2][i]) != d.find_p(v[2][i + 2])) {
                d.join(v[2][i], v[2][i + 2]);
                ans[0].push_back(v[2][i]);
                ans[1].push_back(v[2][i + 2]);
                ans[2].push_back(1);
                ans[3].push_back(i + 1);
            }
            if (v[6][i] != -1 && v[6][i + 2] != -1 && d.find_p(v[6][i]) != d.find_p(v[6][i + 2])) {
                d.join(v[6][i], v[6][i + 2]);
                ans[0].push_back(v[6][i]);
                ans[1].push_back(v[6][i + 2]);
                ans[2].push_back(7);
                ans[3].push_back(i + 1);
            }
        }
        vector< pair< ll, pair<ll, ll> > > vec;
        for (int i = 2; i < 200000; i += 2) {
            if (v[4][i] != -1 && v[4][i + 2] != -1 && d.find_p(v[4][i]) != d.find_p(v[4][i + 2])) {
                d.join(v[4][i], v[4][i + 2]);
                vec.push_back({i + 1, {v[4][i], v[4][i + 2]}});
            }
        }
        for (int i = 2; i <= 200000; i += 2) {
            if (v[4][i] != -1 && v[2][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[2][i])) {
                d.join(v[4][i], v[2][i]);
                vec.push_back({i, {v[4][i], v[2][i]}});
            }
            if (v[4][i] != -1 && v[6][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[6][i])) {
                d.join(v[4][i], v[6][i]);
                vec.push_back({i, {v[4][i], v[6][i]}});
            }
        }
        set< pair<ll, ll> > st;
        sort(vec.begin(), vec.end());
        for (auto i : vec) {
            if (i.first % 2 == 0) {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first - 1);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first + 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first + 1);
                }
            }
            else {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
            }
        }
        if (d.sz[d.find_p(0)] != n) {
            return 0;
        }
        build(ans[0], ans[1], ans[2], ans[3]);
        return 1;
    }
    map< pair<ll, ll>, ll > pts;
    for (int i = 0; i < n; i++) {
        pts[{x[i], y[i]}] = i;
    }
    dsu d(n);
    vector< pair< pair<ll, ll>, pair<ll, ll> > > vec;
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i], y[i] - 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] - 2}])) {
            d.join(i, pts[{x[i], y[i] - 2}]);
            vec.push_back({{x[i], y[i] - 1}, {i, pts[{x[i], y[i] - 2}]}});
        }
        if (pts.count({x[i], y[i] + 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] + 2}])) {
            d.join(i, pts[{x[i], y[i] + 2}]);
            vec.push_back({{x[i], y[i] + 1}, {i, pts[{x[i], y[i] + 2}]}});
        }
    }
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i] - 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] - 2, y[i]}])) {
            d.join(i, pts[{x[i] - 2, y[i]}]);
            vec.push_back({{x[i] - 1, y[i]}, {i, pts[{x[i] - 2, y[i]}]}});
        }
        if (pts.count({x[i] + 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] + 2, y[i]}])) {
            d.join(i, pts[{x[i] + 2, y[i]}]);
            vec.push_back({{x[i] + 1, y[i]}, {i, pts[{x[i] + 2, y[i]}]}});
        }
    }
    set< pair<ll, ll> > st;
    sort(vec.begin(), vec.end());
    for (auto i : vec) {
        if (i.first.first % 2 == 0) {
            if (!st.count({i.first.first - 1, i.first.second})) {
                st.insert({i.first.first - 1, i.first.second});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first - 1);
                ans[3].push_back(i.first.second);
            }
            else {
                st.insert({i.first.first + 1, i.first.second});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first + 1);
                ans[3].push_back(i.first.second);
            }
        }
        else {
            if (!st.count({i.first.first, i.first.second - 1})) {
                st.insert({i.first.first, i.first.second - 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first);
                ans[3].push_back(i.first.second - 1);
            }
            else {
                st.insert({i.first.first, i.first.second + 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first);
                ans[3].push_back(i.first.second + 1);
            }
        }
    }
    if (d.sz[d.find_p(0)] != n) {
        return 0;
    }
    build(ans[0], ans[1], ans[2], ans[3]);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 6 ms 12888 KB Output is correct
3 Correct 7 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12736 KB Output is correct
6 Correct 5 ms 12892 KB Output is correct
7 Correct 5 ms 12888 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 37 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 23 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 7 ms 12892 KB Output is correct
15 Correct 6 ms 12784 KB Output is correct
16 Correct 36 ms 19372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 6 ms 12888 KB Output is correct
3 Correct 7 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12736 KB Output is correct
6 Correct 5 ms 12892 KB Output is correct
7 Correct 5 ms 12888 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 37 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 23 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 7 ms 12892 KB Output is correct
15 Correct 6 ms 12784 KB Output is correct
16 Correct 36 ms 19372 KB Output is correct
17 Correct 5 ms 12892 KB Output is correct
18 Correct 5 ms 12892 KB Output is correct
19 Correct 5 ms 12952 KB Output is correct
20 Correct 5 ms 12884 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 6 ms 12892 KB Output is correct
23 Correct 100 ms 36152 KB Output is correct
24 Correct 6 ms 12892 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12892 KB Output is correct
28 Correct 44 ms 21312 KB Output is correct
29 Correct 66 ms 26100 KB Output is correct
30 Correct 85 ms 31028 KB Output is correct
31 Correct 120 ms 36148 KB Output is correct
32 Correct 5 ms 12888 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 6 ms 12892 KB Output is correct
35 Correct 5 ms 12892 KB Output is correct
36 Correct 5 ms 12892 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 6 ms 12868 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12752 KB Output is correct
43 Correct 6 ms 12892 KB Output is correct
44 Correct 6 ms 12892 KB Output is correct
45 Correct 52 ms 25240 KB Output is correct
46 Correct 73 ms 31472 KB Output is correct
47 Correct 72 ms 31540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 6 ms 12888 KB Output is correct
3 Correct 7 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12736 KB Output is correct
6 Correct 5 ms 12892 KB Output is correct
7 Correct 5 ms 12888 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 37 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 23 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 7 ms 12892 KB Output is correct
15 Correct 6 ms 12784 KB Output is correct
16 Correct 36 ms 19372 KB Output is correct
17 Correct 5 ms 12892 KB Output is correct
18 Correct 5 ms 12892 KB Output is correct
19 Correct 5 ms 12952 KB Output is correct
20 Correct 5 ms 12884 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 6 ms 12892 KB Output is correct
23 Correct 100 ms 36152 KB Output is correct
24 Correct 6 ms 12892 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12892 KB Output is correct
28 Correct 44 ms 21312 KB Output is correct
29 Correct 66 ms 26100 KB Output is correct
30 Correct 85 ms 31028 KB Output is correct
31 Correct 120 ms 36148 KB Output is correct
32 Correct 5 ms 12888 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 6 ms 12892 KB Output is correct
35 Correct 5 ms 12892 KB Output is correct
36 Correct 5 ms 12892 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 6 ms 12868 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12752 KB Output is correct
43 Correct 6 ms 12892 KB Output is correct
44 Correct 6 ms 12892 KB Output is correct
45 Correct 52 ms 25240 KB Output is correct
46 Correct 73 ms 31472 KB Output is correct
47 Correct 72 ms 31540 KB Output is correct
48 Correct 5 ms 12892 KB Output is correct
49 Correct 5 ms 12892 KB Output is correct
50 Correct 5 ms 12892 KB Output is correct
51 Correct 5 ms 12892 KB Output is correct
52 Correct 5 ms 12888 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 5 ms 12892 KB Output is correct
55 Correct 92 ms 32952 KB Output is correct
56 Correct 6 ms 12892 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 7 ms 12888 KB Output is correct
59 Correct 8 ms 12892 KB Output is correct
60 Correct 44 ms 22016 KB Output is correct
61 Correct 58 ms 26936 KB Output is correct
62 Correct 71 ms 29220 KB Output is correct
63 Correct 92 ms 33592 KB Output is correct
64 Correct 6 ms 12888 KB Output is correct
65 Correct 5 ms 12892 KB Output is correct
66 Correct 6 ms 12892 KB Output is correct
67 Correct 70 ms 27576 KB Output is correct
68 Correct 75 ms 27704 KB Output is correct
69 Correct 75 ms 27712 KB Output is correct
70 Correct 7 ms 12892 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 47 ms 23732 KB Output is correct
73 Correct 73 ms 30008 KB Output is correct
74 Correct 92 ms 36404 KB Output is correct
75 Correct 80 ms 30520 KB Output is correct
76 Correct 73 ms 27700 KB Output is correct
77 Correct 10 ms 12892 KB Output is correct
78 Correct 8 ms 12892 KB Output is correct
79 Correct 45 ms 23240 KB Output is correct
80 Correct 68 ms 29236 KB Output is correct
81 Correct 89 ms 36288 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 6 ms 12888 KB Output is correct
3 Correct 7 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12736 KB Output is correct
6 Correct 5 ms 12892 KB Output is correct
7 Correct 5 ms 12888 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 37 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 23 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 7 ms 12892 KB Output is correct
15 Correct 6 ms 12784 KB Output is correct
16 Correct 36 ms 19372 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 0 ms 428 KB Output is correct
20 Correct 479 ms 49472 KB Output is correct
21 Correct 487 ms 49260 KB Output is correct
22 Correct 493 ms 47544 KB Output is correct
23 Correct 377 ms 41396 KB Output is correct
24 Correct 199 ms 19024 KB Output is correct
25 Correct 479 ms 41588 KB Output is correct
26 Correct 378 ms 42304 KB Output is correct
27 Correct 452 ms 49104 KB Output is correct
28 Correct 439 ms 49080 KB Output is correct
29 Correct 502 ms 48568 KB Output is correct
30 Correct 520 ms 48824 KB Output is correct
31 Correct 0 ms 344 KB Output is correct
32 Incorrect 24 ms 3756 KB Tree @(185725, 20413) appears more than once: for edges on positions 631 and 647
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 6 ms 12888 KB Output is correct
3 Correct 7 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12736 KB Output is correct
6 Correct 5 ms 12892 KB Output is correct
7 Correct 5 ms 12888 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 37 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 23 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 7 ms 12892 KB Output is correct
15 Correct 6 ms 12784 KB Output is correct
16 Correct 36 ms 19372 KB Output is correct
17 Correct 430 ms 48568 KB Output is correct
18 Correct 425 ms 48316 KB Output is correct
19 Correct 476 ms 49256 KB Output is correct
20 Correct 501 ms 48316 KB Output is correct
21 Correct 432 ms 44468 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Incorrect 65 ms 7956 KB Tree @(185187, 20679) appears more than once: for edges on positions 1150 and 1162
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 6 ms 12888 KB Output is correct
3 Correct 7 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12736 KB Output is correct
6 Correct 5 ms 12892 KB Output is correct
7 Correct 5 ms 12888 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 37 ms 19516 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 23 ms 15680 KB Output is correct
12 Correct 10 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 7 ms 12892 KB Output is correct
15 Correct 6 ms 12784 KB Output is correct
16 Correct 36 ms 19372 KB Output is correct
17 Correct 5 ms 12892 KB Output is correct
18 Correct 5 ms 12892 KB Output is correct
19 Correct 5 ms 12952 KB Output is correct
20 Correct 5 ms 12884 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 6 ms 12892 KB Output is correct
23 Correct 100 ms 36152 KB Output is correct
24 Correct 6 ms 12892 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12892 KB Output is correct
28 Correct 44 ms 21312 KB Output is correct
29 Correct 66 ms 26100 KB Output is correct
30 Correct 85 ms 31028 KB Output is correct
31 Correct 120 ms 36148 KB Output is correct
32 Correct 5 ms 12888 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 6 ms 12892 KB Output is correct
35 Correct 5 ms 12892 KB Output is correct
36 Correct 5 ms 12892 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 6 ms 12868 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12752 KB Output is correct
43 Correct 6 ms 12892 KB Output is correct
44 Correct 6 ms 12892 KB Output is correct
45 Correct 52 ms 25240 KB Output is correct
46 Correct 73 ms 31472 KB Output is correct
47 Correct 72 ms 31540 KB Output is correct
48 Correct 5 ms 12892 KB Output is correct
49 Correct 5 ms 12892 KB Output is correct
50 Correct 5 ms 12892 KB Output is correct
51 Correct 5 ms 12892 KB Output is correct
52 Correct 5 ms 12888 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 5 ms 12892 KB Output is correct
55 Correct 92 ms 32952 KB Output is correct
56 Correct 6 ms 12892 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 7 ms 12888 KB Output is correct
59 Correct 8 ms 12892 KB Output is correct
60 Correct 44 ms 22016 KB Output is correct
61 Correct 58 ms 26936 KB Output is correct
62 Correct 71 ms 29220 KB Output is correct
63 Correct 92 ms 33592 KB Output is correct
64 Correct 6 ms 12888 KB Output is correct
65 Correct 5 ms 12892 KB Output is correct
66 Correct 6 ms 12892 KB Output is correct
67 Correct 70 ms 27576 KB Output is correct
68 Correct 75 ms 27704 KB Output is correct
69 Correct 75 ms 27712 KB Output is correct
70 Correct 7 ms 12892 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 47 ms 23732 KB Output is correct
73 Correct 73 ms 30008 KB Output is correct
74 Correct 92 ms 36404 KB Output is correct
75 Correct 80 ms 30520 KB Output is correct
76 Correct 73 ms 27700 KB Output is correct
77 Correct 10 ms 12892 KB Output is correct
78 Correct 8 ms 12892 KB Output is correct
79 Correct 45 ms 23240 KB Output is correct
80 Correct 68 ms 29236 KB Output is correct
81 Correct 89 ms 36288 KB Output is correct
82 Correct 0 ms 348 KB Output is correct
83 Correct 1 ms 348 KB Output is correct
84 Correct 0 ms 428 KB Output is correct
85 Correct 479 ms 49472 KB Output is correct
86 Correct 487 ms 49260 KB Output is correct
87 Correct 493 ms 47544 KB Output is correct
88 Correct 377 ms 41396 KB Output is correct
89 Correct 199 ms 19024 KB Output is correct
90 Correct 479 ms 41588 KB Output is correct
91 Correct 378 ms 42304 KB Output is correct
92 Correct 452 ms 49104 KB Output is correct
93 Correct 439 ms 49080 KB Output is correct
94 Correct 502 ms 48568 KB Output is correct
95 Correct 520 ms 48824 KB Output is correct
96 Correct 0 ms 344 KB Output is correct
97 Incorrect 24 ms 3756 KB Tree @(185725, 20413) appears more than once: for edges on positions 631 and 647
98 Halted 0 ms 0 KB -