Submission #1061464

# Submission time Handle Problem Language Result Execution time Memory
1061464 2024-08-16T09:25:25 Z TheQuantiX Fountain Parks (IOI21_parks) C++17
30 / 100
533 ms 49344 KB
#include<bits/stdc++.h>
#include "parks.h"

using namespace std;
using ll = long long;

ll n, m, q, k, x, y, a, b, c;

struct dsu {
    ll n;
    vector<ll> par;
    vector<ll> sz;
    
    dsu(ll N) : n(N) {
        par.resize(n);
        sz.resize(n);
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }

    ll find_p(ll x) {
        if (par[x] == x) {
            return x;
        }
        ll p = find_p(par[x]);
        par[x] = p;
        return p;
    }

    void join(ll x, ll y) {
        x = find_p(x);
        y = find_p(y);
        if (x == y) {
            return;
        }
        if (sz[y] > sz[x]) {
            swap(x, y);
        }
        par[y] = x;
        sz[x] += sz[y];
    }
};

int construct_roads(vector<int> x, vector<int> y) {
    n = x.size();
    array< vector<int>, 4 > ans;
    if (*max_element(x.begin(), x.end()) <= 6) {
        vector< vector<ll> > v(7, vector<ll> (200001, -1));
        for (int i = 0; i < n; i++) {
            v[x[i]][y[i]] = i;
        }
        dsu d(n);
        for (int i = 2; i < 200000; i += 2) {
            if (v[2][i] != -1 && v[2][i + 2] != -1 && d.find_p(v[2][i]) != d.find_p(v[2][i + 2])) {
                d.join(v[2][i], v[2][i + 2]);
                ans[0].push_back(v[2][i]);
                ans[1].push_back(v[2][i + 2]);
                ans[2].push_back(1);
                ans[3].push_back(i + 1);
            }
            if (v[6][i] != -1 && v[6][i + 2] != -1 && d.find_p(v[6][i]) != d.find_p(v[6][i + 2])) {
                d.join(v[6][i], v[6][i + 2]);
                ans[0].push_back(v[6][i]);
                ans[1].push_back(v[6][i + 2]);
                ans[2].push_back(7);
                ans[3].push_back(i + 1);
            }
        }
        vector< pair< ll, pair<ll, ll> > > vec;
        for (int i = 2; i < 200000; i += 2) {
            if (v[4][i] != -1 && v[4][i + 2] != -1 && d.find_p(v[4][i]) != d.find_p(v[4][i + 2])) {
                d.join(v[4][i], v[4][i + 2]);
                vec.push_back({i + 1, {v[4][i], v[4][i + 2]}});
            }
        }
        for (int i = 2; i <= 200000; i += 2) {
            if (v[4][i] != -1 && v[2][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[2][i])) {
                d.join(v[4][i], v[2][i]);
                vec.push_back({i, {v[4][i], v[2][i]}});
            }
            if (v[4][i] != -1 && v[6][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[6][i])) {
                d.join(v[4][i], v[6][i]);
                vec.push_back({i, {v[4][i], v[6][i]}});
            }
        }
        set< pair<ll, ll> > st;
        sort(vec.begin(), vec.end());
        for (auto i : vec) {
            if (i.first % 2 == 0) {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first - 1);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first + 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first + 1);
                }
            }
            else {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
            }
        }
        if (d.sz[d.find_p(0)] != n) {
            return 0;
        }
        build(ans[0], ans[1], ans[2], ans[3]);
        return 1;
    }
    map< pair<ll, ll>, ll > pts;
    for (int i = 0; i < n; i++) {
        pts[{x[i], y[i]}] = i;
    }
    dsu d(n);
    vector< pair< pair<ll, ll>, pair<ll, ll> > > vec;
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i], y[i] - 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] - 2}])) {
            d.join(i, pts[{x[i], y[i] - 2}]);
            vec.push_back({{x[i], y[i] - 1}, {i, pts[{x[i], y[i] - 2}]}});
        }
        if (pts.count({x[i], y[i] + 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] + 2}])) {
            d.join(i, pts[{x[i], y[i] + 2}]);
            vec.push_back({{x[i], y[i] + 1}, {i, pts[{x[i], y[i] + 2}]}});
        }
        if (pts.count({x[i] - 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] - 2, y[i]}])) {
            d.join(i, pts[{x[i] - 2, y[i]}]);
            vec.push_back({{x[i] - 1, y[i]}, {i, pts[{x[i] - 2, y[i]}]}});
        }
        if (pts.count({x[i] + 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] + 2, y[i]}])) {
            d.join(i, pts[{x[i] + 2, y[i]}]);
            vec.push_back({{x[i] + 1, y[i]}, {i, pts[{x[i] + 2, y[i]}]}});
        }
    }
    set< pair<ll, ll> > st;
    sort(vec.begin(), vec.end());
    for (auto i : vec) {
        if (i.first.first % 2 == 0) {
            if (!st.count({i.first.first - 1, i.first.second})) {
                st.insert({i.first.first - 1, i.first.second});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first - 1);
                ans[3].push_back(i.first.second);
            }
            else {
                st.insert({i.first.first + 1, i.first.second});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first + 1);
                ans[3].push_back(i.first.second);
            }
        }
        else {
            if (!st.count({i.first.first, i.first.second - 1})) {
                st.insert({i.first.first, i.first.second - 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first);
                ans[3].push_back(i.first.second - 1);
            }
            else {
                st.insert({i.first.first, i.first.second + 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back(i.first.first);
                ans[3].push_back(i.first.second + 1);
            }
        }
    }
    if (d.sz[d.find_p(0)] != n) {
        return 0;
    }
    build(ans[0], ans[1], ans[2], ans[3]);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12892 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12840 KB Output is correct
9 Correct 39 ms 19520 KB Output is correct
10 Correct 11 ms 12888 KB Output is correct
11 Correct 22 ms 15680 KB Output is correct
12 Correct 12 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 8 ms 12892 KB Output is correct
16 Correct 36 ms 19476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12892 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12840 KB Output is correct
9 Correct 39 ms 19520 KB Output is correct
10 Correct 11 ms 12888 KB Output is correct
11 Correct 22 ms 15680 KB Output is correct
12 Correct 12 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 8 ms 12892 KB Output is correct
16 Correct 36 ms 19476 KB Output is correct
17 Correct 5 ms 12892 KB Output is correct
18 Correct 6 ms 12888 KB Output is correct
19 Correct 6 ms 12936 KB Output is correct
20 Correct 5 ms 12768 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 5 ms 12892 KB Output is correct
23 Correct 109 ms 36068 KB Output is correct
24 Correct 6 ms 12892 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 13144 KB Output is correct
28 Correct 66 ms 21232 KB Output is correct
29 Correct 70 ms 25908 KB Output is correct
30 Correct 84 ms 31636 KB Output is correct
31 Correct 102 ms 36516 KB Output is correct
32 Correct 6 ms 12892 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 5 ms 12892 KB Output is correct
35 Correct 6 ms 12892 KB Output is correct
36 Correct 5 ms 12736 KB Output is correct
37 Correct 7 ms 12892 KB Output is correct
38 Correct 5 ms 12892 KB Output is correct
39 Correct 6 ms 12888 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 6 ms 12796 KB Output is correct
42 Correct 6 ms 12892 KB Output is correct
43 Correct 7 ms 12888 KB Output is correct
44 Correct 6 ms 12964 KB Output is correct
45 Correct 61 ms 26164 KB Output is correct
46 Correct 86 ms 31540 KB Output is correct
47 Correct 73 ms 31548 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12892 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12840 KB Output is correct
9 Correct 39 ms 19520 KB Output is correct
10 Correct 11 ms 12888 KB Output is correct
11 Correct 22 ms 15680 KB Output is correct
12 Correct 12 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 8 ms 12892 KB Output is correct
16 Correct 36 ms 19476 KB Output is correct
17 Correct 5 ms 12892 KB Output is correct
18 Correct 6 ms 12888 KB Output is correct
19 Correct 6 ms 12936 KB Output is correct
20 Correct 5 ms 12768 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 5 ms 12892 KB Output is correct
23 Correct 109 ms 36068 KB Output is correct
24 Correct 6 ms 12892 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 13144 KB Output is correct
28 Correct 66 ms 21232 KB Output is correct
29 Correct 70 ms 25908 KB Output is correct
30 Correct 84 ms 31636 KB Output is correct
31 Correct 102 ms 36516 KB Output is correct
32 Correct 6 ms 12892 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 5 ms 12892 KB Output is correct
35 Correct 6 ms 12892 KB Output is correct
36 Correct 5 ms 12736 KB Output is correct
37 Correct 7 ms 12892 KB Output is correct
38 Correct 5 ms 12892 KB Output is correct
39 Correct 6 ms 12888 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 6 ms 12796 KB Output is correct
42 Correct 6 ms 12892 KB Output is correct
43 Correct 7 ms 12888 KB Output is correct
44 Correct 6 ms 12964 KB Output is correct
45 Correct 61 ms 26164 KB Output is correct
46 Correct 86 ms 31540 KB Output is correct
47 Correct 73 ms 31548 KB Output is correct
48 Correct 5 ms 12892 KB Output is correct
49 Correct 5 ms 12892 KB Output is correct
50 Correct 5 ms 12892 KB Output is correct
51 Correct 6 ms 12888 KB Output is correct
52 Correct 5 ms 12892 KB Output is correct
53 Correct 6 ms 12852 KB Output is correct
54 Correct 5 ms 12888 KB Output is correct
55 Correct 91 ms 32824 KB Output is correct
56 Correct 6 ms 12892 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 7 ms 12892 KB Output is correct
59 Correct 8 ms 12936 KB Output is correct
60 Correct 43 ms 22420 KB Output is correct
61 Correct 67 ms 27096 KB Output is correct
62 Correct 78 ms 29236 KB Output is correct
63 Correct 92 ms 34536 KB Output is correct
64 Correct 5 ms 12892 KB Output is correct
65 Correct 5 ms 12892 KB Output is correct
66 Correct 5 ms 12892 KB Output is correct
67 Correct 75 ms 27576 KB Output is correct
68 Correct 71 ms 27700 KB Output is correct
69 Correct 72 ms 27700 KB Output is correct
70 Correct 6 ms 12888 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 46 ms 23736 KB Output is correct
73 Correct 70 ms 30008 KB Output is correct
74 Correct 93 ms 36284 KB Output is correct
75 Correct 83 ms 30520 KB Output is correct
76 Correct 75 ms 27712 KB Output is correct
77 Correct 7 ms 12888 KB Output is correct
78 Correct 8 ms 12892 KB Output is correct
79 Correct 45 ms 23304 KB Output is correct
80 Correct 67 ms 29856 KB Output is correct
81 Correct 91 ms 35124 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12892 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12840 KB Output is correct
9 Correct 39 ms 19520 KB Output is correct
10 Correct 11 ms 12888 KB Output is correct
11 Correct 22 ms 15680 KB Output is correct
12 Correct 12 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 8 ms 12892 KB Output is correct
16 Correct 36 ms 19476 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 473 ms 48384 KB Output is correct
21 Correct 444 ms 49164 KB Output is correct
22 Correct 472 ms 49336 KB Output is correct
23 Correct 378 ms 40880 KB Output is correct
24 Correct 217 ms 19280 KB Output is correct
25 Correct 485 ms 41660 KB Output is correct
26 Correct 442 ms 41876 KB Output is correct
27 Correct 494 ms 49084 KB Output is correct
28 Correct 472 ms 48568 KB Output is correct
29 Correct 533 ms 49344 KB Output is correct
30 Correct 515 ms 48060 KB Output is correct
31 Correct 0 ms 344 KB Output is correct
32 Incorrect 24 ms 3664 KB Tree @(185725, 20413) appears more than once: for edges on positions 631 and 647
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12892 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12840 KB Output is correct
9 Correct 39 ms 19520 KB Output is correct
10 Correct 11 ms 12888 KB Output is correct
11 Correct 22 ms 15680 KB Output is correct
12 Correct 12 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 8 ms 12892 KB Output is correct
16 Correct 36 ms 19476 KB Output is correct
17 Correct 433 ms 48628 KB Output is correct
18 Correct 452 ms 47772 KB Output is correct
19 Incorrect 458 ms 48964 KB Tree @(100001, 50003) appears more than once: for edges on positions 199993 and 199994
20 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12892 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 5 ms 12892 KB Output is correct
5 Correct 6 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12840 KB Output is correct
9 Correct 39 ms 19520 KB Output is correct
10 Correct 11 ms 12888 KB Output is correct
11 Correct 22 ms 15680 KB Output is correct
12 Correct 12 ms 13144 KB Output is correct
13 Correct 11 ms 13884 KB Output is correct
14 Correct 5 ms 12892 KB Output is correct
15 Correct 8 ms 12892 KB Output is correct
16 Correct 36 ms 19476 KB Output is correct
17 Correct 5 ms 12892 KB Output is correct
18 Correct 6 ms 12888 KB Output is correct
19 Correct 6 ms 12936 KB Output is correct
20 Correct 5 ms 12768 KB Output is correct
21 Correct 6 ms 12892 KB Output is correct
22 Correct 5 ms 12892 KB Output is correct
23 Correct 109 ms 36068 KB Output is correct
24 Correct 6 ms 12892 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 13144 KB Output is correct
28 Correct 66 ms 21232 KB Output is correct
29 Correct 70 ms 25908 KB Output is correct
30 Correct 84 ms 31636 KB Output is correct
31 Correct 102 ms 36516 KB Output is correct
32 Correct 6 ms 12892 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 5 ms 12892 KB Output is correct
35 Correct 6 ms 12892 KB Output is correct
36 Correct 5 ms 12736 KB Output is correct
37 Correct 7 ms 12892 KB Output is correct
38 Correct 5 ms 12892 KB Output is correct
39 Correct 6 ms 12888 KB Output is correct
40 Correct 6 ms 12892 KB Output is correct
41 Correct 6 ms 12796 KB Output is correct
42 Correct 6 ms 12892 KB Output is correct
43 Correct 7 ms 12888 KB Output is correct
44 Correct 6 ms 12964 KB Output is correct
45 Correct 61 ms 26164 KB Output is correct
46 Correct 86 ms 31540 KB Output is correct
47 Correct 73 ms 31548 KB Output is correct
48 Correct 5 ms 12892 KB Output is correct
49 Correct 5 ms 12892 KB Output is correct
50 Correct 5 ms 12892 KB Output is correct
51 Correct 6 ms 12888 KB Output is correct
52 Correct 5 ms 12892 KB Output is correct
53 Correct 6 ms 12852 KB Output is correct
54 Correct 5 ms 12888 KB Output is correct
55 Correct 91 ms 32824 KB Output is correct
56 Correct 6 ms 12892 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 7 ms 12892 KB Output is correct
59 Correct 8 ms 12936 KB Output is correct
60 Correct 43 ms 22420 KB Output is correct
61 Correct 67 ms 27096 KB Output is correct
62 Correct 78 ms 29236 KB Output is correct
63 Correct 92 ms 34536 KB Output is correct
64 Correct 5 ms 12892 KB Output is correct
65 Correct 5 ms 12892 KB Output is correct
66 Correct 5 ms 12892 KB Output is correct
67 Correct 75 ms 27576 KB Output is correct
68 Correct 71 ms 27700 KB Output is correct
69 Correct 72 ms 27700 KB Output is correct
70 Correct 6 ms 12888 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 46 ms 23736 KB Output is correct
73 Correct 70 ms 30008 KB Output is correct
74 Correct 93 ms 36284 KB Output is correct
75 Correct 83 ms 30520 KB Output is correct
76 Correct 75 ms 27712 KB Output is correct
77 Correct 7 ms 12888 KB Output is correct
78 Correct 8 ms 12892 KB Output is correct
79 Correct 45 ms 23304 KB Output is correct
80 Correct 67 ms 29856 KB Output is correct
81 Correct 91 ms 35124 KB Output is correct
82 Correct 0 ms 348 KB Output is correct
83 Correct 0 ms 348 KB Output is correct
84 Correct 1 ms 348 KB Output is correct
85 Correct 473 ms 48384 KB Output is correct
86 Correct 444 ms 49164 KB Output is correct
87 Correct 472 ms 49336 KB Output is correct
88 Correct 378 ms 40880 KB Output is correct
89 Correct 217 ms 19280 KB Output is correct
90 Correct 485 ms 41660 KB Output is correct
91 Correct 442 ms 41876 KB Output is correct
92 Correct 494 ms 49084 KB Output is correct
93 Correct 472 ms 48568 KB Output is correct
94 Correct 533 ms 49344 KB Output is correct
95 Correct 515 ms 48060 KB Output is correct
96 Correct 0 ms 344 KB Output is correct
97 Incorrect 24 ms 3664 KB Tree @(185725, 20413) appears more than once: for edges on positions 631 and 647
98 Halted 0 ms 0 KB -