답안 #1061184

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1061184 2024-08-16T07:00:49 Z hashiryo Potatoes and fertilizers (LMIO19_bulves) C++17
100 / 100
436 ms 29524 KB
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &u){if(!u)os<<"0";__int128_t tmp=u<0?(os<<"-",-u):u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &u){if(!u)os<<"0";__uint128_t tmp=u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<int8_t>{using type= int16_t;};
template<>struct make_long<uint8_t>{using type= uint16_t;};
template<>struct make_long<int16_t>{using type= int32_t;};
template<>struct make_long<uint16_t>{using type= uint32_t;};
template<>struct make_long<int32_t>{using type= int64_t;};
template<>struct make_long<uint32_t>{using type= uint64_t;};
template<>struct make_long<int64_t>{using type= __int128_t;};
template<>struct make_long<uint64_t>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
template <class T, bool persistent= false, size_t NODE_SIZE= 1 << 22> class PiecewiseLinearConvex {
 using D= make_long_t<T>;
 struct Node {
  int ch[2];
  T z, x, d, a;
  D s;
  size_t sz;
  friend std::ostream &operator<<(std::ostream &os, const Node &t) { return os << "{z:" << t.z << ",x:" << t.x << ",d:" << t.d << ",a:" << t.a << ",s:" << t.s << ",sz:" << t.sz << ",ch:(" << t.ch[0] << "," << t.ch[1] << ")}"; }
 };
 static inline size_t ni= 1;
 static inline Node *n= new Node[NODE_SIZE];
 static inline void info(int t, int d, std::stringstream &ss) {
  if (!t) return;
  info(n[t].ch[0], d + 1, ss);
  for (int i= 0; i < d; ++i) ss << "   ";
  ss << " ■ " << n[t] << '\n', info(n[t].ch[1], d + 1, ss);
 }
 static inline void dump_xs(int t, std::vector<T> &xs) {
  if (t) push(t), dump_xs(n[t].ch[0], xs), xs.push_back(n[t].x), dump_xs(n[t].ch[1], xs);
 }
 static inline void dump_slopes_l(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_l(n[t].ch[1], ofs, as), ofs+= n[n[t].ch[1]].a + n[t].d, as.push_back(-ofs), dump_slopes_l(n[t].ch[0], ofs, as);
 }
 static inline void dump_slopes_r(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_r(n[t].ch[0], ofs, as), ofs+= n[n[t].ch[0]].a + n[t].d, as.push_back(ofs), dump_slopes_r(n[t].ch[1], ofs, as);
 }
 static inline int create(T d, T x) { return n[ni].d= d, n[ni].x= x, n[ni].z= 0, ni++; }
 template <class Iter> static inline int build(Iter bg, Iter ed) {
  if (bg == ed) return 0;
  auto md= bg + (ed - bg) / 2;
  int t= create(md->first, md->second);
  return n[t].ch[0]= build(bg, md), n[t].ch[1]= build(md + 1, ed), update(t), t;
 }
 template <class Iter> static inline void dump(Iter itr, int t) {
  if (!t) return;
  push(t);
  size_t sz= n[n[t].ch[0]].sz;
  dump(itr, n[t].ch[0]), *(itr + sz)= {n[t].d, n[t].x}, dump(itr + sz + 1, n[t].ch[1]);
 }
 static inline void update(int t) {
  int l= n[t].ch[0], r= n[t].ch[1];
  n[t].sz= 1 + n[l].sz + n[r].sz, n[t].a= n[t].d + n[l].a + n[r].a, n[t].s= D(n[t].x) * n[t].d + n[l].s + n[r].s;
 }
 template <bool b= 1> static inline void prop(int &t, T v) {
  if constexpr (persistent && b) {
   if (!t) return;
   n[ni]= n[t], t= ni++;
  }
  n[t].z+= v, n[t].s+= D(v) * n[t].a, n[t].x+= v;
 }
 static inline void push(int t) {
  if (n[t].z != 0) prop(n[t].ch[0], n[t].z), prop(n[t].ch[1], n[t].z), n[t].z= 0;
 }
 template <bool r> static inline int join_(int t, int a, int b) {
  push(a);
  if constexpr (r) b= join<0>(b, t, n[a].ch[0]);
  else b= join<0>(n[a].ch[1], t, b);
  if constexpr (persistent) n[ni]= n[a], a= ni++;
  if (n[n[a].ch[r]].sz * 4 >= n[b].sz) return n[a].ch[!r]= b, update(a), a;
  return n[a].ch[!r]= n[b].ch[r], update(a), n[b].ch[r]= a, update(b), b;
 }
 template <bool b= 1> static inline int join(int l, int t, int r) {
  if constexpr (persistent && b) n[ni]= n[t], t= ni++;
  if (n[l].sz > n[r].sz * 4) return join_<0>(t, l, r);
  if (n[r].sz > n[l].sz * 4) return join_<1>(t, r, l);
  return n[t].ch[0]= l, n[t].ch[1]= r, update(t), t;
 }
 static inline std::array<int, 3> split(int t, T x) {
  if (!t) return {0, 0, 0};
  push(t);
  if (n[t].x < x) {
   auto [a, b, c]= split(n[t].ch[1], x);
   return {join(n[t].ch[0], t, a), b, c};
  } else if (x < n[t].x) {
   auto [a, b, c]= split(n[t].ch[0], x);
   return {a, b, join(c, t, n[t].ch[1])};
  }
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 static inline int unite(int l, int r) {
  if (!l) return r;
  if (!r) return l;
  push(l);
  if constexpr (persistent) n[ni]= n[l], l= ni++;
  auto [a, b, c]= split(r, n[l].x);
  return n[l].d+= n[b].d, join<0>(unite(a, n[l].ch[0]), l, unite(n[l].ch[1], c));
 }
 static inline int insert(int t, T x, T d) {
  if (!t) return n[ni]= Node{{0, 0}, 0, x, d, d, D(x) * d, 1}, ni++;
  push(t);
  if constexpr (persistent) n[ni]= n[t], t= ni++;
  if (n[t].x == x) return n[t].d+= d, update(t), t;
  return x < n[t].x ? join<0>(insert(n[t].ch[0], x, d), t, n[t].ch[1]) : join<0>(n[t].ch[0], t, insert(n[t].ch[1], x, d));
 }
 template <bool r> static inline std::pair<int, int> pop(int t) {
  if (push(t); !n[t].ch[r]) return {n[t].ch[!r], t};
  auto [a, s]= pop<r>(n[t].ch[r]);
  if constexpr (r) return {join(n[t].ch[!r], t, a), s};
  else return {join(a, t, n[t].ch[!r]), s};
 }
 template <bool r> static inline bool lt(T a, T b) {
  if constexpr (r) return b < a;
  else return a < b;
 }
 template <bool r> static inline int cut(int t, T x) {
  if (!t) return t;
  if (push(t); n[t].x == x) return n[t].ch[!r];
  if (lt<r>(n[t].x, x)) return cut<r>(n[t].ch[!r], x);
  if constexpr (r) return join(n[t].ch[0], t, cut<1>(n[t].ch[1], x));
  else return join(cut<0>(n[t].ch[0], x), t, n[t].ch[1]);
 }
 template <bool r> static inline D calc_y(int t, T x, T ol, D ou) {
  for (; t;) {
   if (push(t); lt<r>(n[t].x, x)) t= n[t].ch[!r];
   else {
    if (ol+= n[n[t].ch[!r]].a, ou+= n[n[t].ch[!r]].s; n[t].x == x) break;
    ol+= n[t].d, ou+= D(n[t].x) * n[t].d, t= n[t].ch[r];
   }
  }
  return D(x) * ol - ou;
 }
 template <bool r> static inline std::array<int, 3> split(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (p < s) {
   auto [a, b, c]= split<r>(n[t].ch[!r], p, ol, ou);
   if constexpr (r) return {a, b, join(c, t, n[t].ch[r])};
   else return {join(n[t].ch[r], t, a), b, c};
  }
  ol= s + n[t].d;
  if (ol < p) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b, c]= split<r>(n[t].ch[r], p, ol, ou);
   if constexpr (r) return {join(n[t].ch[!r], t, a), b, c};
   else return {a, b, join(c, t, n[t].ch[!r])};
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 template <bool l> static inline bool lte(T a, T b) {
  if constexpr (l) return a < b;
  else return a <= b;
 }
 template <bool l, bool r> static inline std::pair<int, int> split_cum(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (lte<l>(p, s)) {
   auto [c, b]= split_cum<l, r>(n[t].ch[!r], p, ol, ou);
   if constexpr (l) {
    if constexpr (r) return {join(c, t, n[t].ch[r]), b};
    else return {join(n[t].ch[r], t, c), b};
   } else return {c, b};
  }
  ol= s + n[t].d;
  if (lte<!l>(ol, p)) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b]= split_cum<l, r>(n[t].ch[r], p, ol, ou);
   if constexpr (l) return {a, b};
   else {
    if constexpr (r) return {join(n[t].ch[!r], t, a), b};
    else return {join(a, t, n[t].ch[!r]), b};
   }
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[!r ^ l], t};
 }
 int mn, lr[2];
 bool bf[2];
 T o[2], rem, bx[2];
 D y;
 inline D calc_y(T x) {
  if (!mn) return 0;
  if (n[mn].x == x) return 0;
  return x < n[mn].x ? -calc_y<0>(lr[0], x, o[0], D(n[mn].x) * o[0]) : calc_y<1>(lr[1], x, o[1], D(n[mn].x) * o[1]);
 }
 inline void slope_eval(bool neg) {
  T p= neg ? -rem : rem, ol= o[neg];
  if (p <= ol) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b, c]= neg ? split<1>(lr[neg], p, ol, ou) : split<0>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if (neg) y-= ou, lr[!neg]= join(lr[!neg], mn, a), lr[neg]= c;
   else y+= ou, lr[!neg]= join(c, mn, lr[!neg]), lr[neg]= a;
   mn= b;
  }
  rem= 0;
 }
 template <bool l, bool neg> inline void slope_eval_cum() {
  T p= neg ? -rem : rem, ol= o[neg];
  if (lte<l>(p, ol)) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b]= split_cum<l, neg>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if constexpr (l) lr[neg]= a;
   else {
    if constexpr (neg) lr[!neg]= join(lr[!neg], mn, a);
    else lr[!neg]= join(a, mn, lr[!neg]);
   }
   if constexpr (neg) y-= ou;
   else y+= ou;
   mn= b;
  }
  rem= 0;
 }
 template <bool r> void add_inf(T x0) {
  if (bf[r] && !lt<r>(bx[r], x0)) return;
  if (assert(!bf[!r] || !lt<r>(bx[!r], x0)), bf[r]= true, bx[r]= x0; !mn) return;
  if (lt<r>(x0, n[mn].x)) return lr[r]= cut<r>(lr[r], x0), void();
  D q= n[lr[!r]].s + D(n[mn].x) * o[!r];
  T v= o[!r] + n[lr[!r]].a;
  lr[!r]= cut<r>(lr[!r], x0);
  if (!r) y-= q, rem+= v;
  else y+= q, rem-= v;
  if (lr[!r]) std::tie(lr[r], mn)= pop<!r>(lr[!r]), lr[!r]= 0;
  else mn= lr[r]= 0;
  o[r]= n[mn].d, o[!r]= 0;
 }
 inline void prop(T x) {
  if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
  n[mn].x+= x;
 }
public:
 // f(x) := 0
 PiecewiseLinearConvex(): mn(0), lr{0, 0}, bf{0, 0}, o{0, 0}, rem(0), bx{0, 0}, y(0) {}
 //  f(x) := sum max(0, a(x-x0))
 PiecewiseLinearConvex(const std::vector<std::pair<T, T>> &ramps): PiecewiseLinearConvex() {
  int m= ramps.size();
  if (!m) return;
  std::vector<std::pair<T, T>> w(m);
  int s= 0, t= 0;
  for (auto [d, x]: ramps) {
   if (d == 0) continue;
   if (d < 0) y-= D(d) * x, rem+= d, d= -d;
   w[s++]= {d, x};
  }
  std::sort(w.begin(), w.begin() + s, [](auto a, auto b) { return a.second < b.second; });
  for (int i= 0; i < s; ++i) {
   if (t && w[t - 1].second == w[i].second) w[t - 1].first+= w[i].first;
   else w[t++]= w[i];
  }
  mn= create(w[0].first, w[0].second), o[1]= n[mn].d, lr[1]= build(w.begin() + 1, w.begin() + t);
 }
 std::string info() {
  std::stringstream ss;
  if (ss << "\n rem:" << rem << ", y:" << y << ", mn:" << mn << ", lr:{" << lr[0] << ", " << lr[1] << "}\n bf[0]:" << bf[0] << ", bf[1]:" << bf[1] << ", bx[0]:" << bx[0] << ", bx[1]:" << bx[1] << "\n " << "o[0]:" << o[0] << ", o[1]:" << o[1] << "\n"; mn) {
   if (lr[0]) info(lr[0], 1, ss);
   ss << " ■ " << n[mn] << '\n';
   if (lr[1]) info(lr[1], 1, ss);
  }
  return ss.str();
 }
 template <class... Args> static inline void rebuild(Args &...plc) {
  static_assert(std::conjunction_v<std::is_same<PiecewiseLinearConvex, Args>...>);
  constexpr size_t m= sizeof...(Args);
  std::array<std::vector<std::pair<T, T>>, m> ls, rs;
  std::array<std::pair<T, T>, m> mns;
  int i= 0;
  (void)(int[]){(mns[i]= {n[plc.mn].d, n[plc.mn].x}, ls[i].resize(n[plc.lr[0]].sz), rs[i].resize(n[plc.lr[1]].sz), dump(ls[i].begin(), plc.lr[0]), dump(rs[i].begin(), plc.lr[1]), ++i)...};
  ni= 1, i= 0;
  (void)(int[]){((plc.mn ? (plc.mn= create(mns[i].first, mns[i].second)) : 0), plc.lr[0]= build(ls[i].begin(), ls[i].end()), plc.lr[1]= build(rs[i].begin(), rs[i].end()), ++i)...};
 }
 static inline void rebuild(std::vector<PiecewiseLinearConvex> &plcs) {
  size_t m= plcs.size();
  std::vector<std::vector<std::pair<T, T>>> ls(m), rs(m);
  std::vector<std::pair<T, T>> mns(m);
  for (int i= m; i--;) mns[i]= {n[plcs[i].mn].d, n[plcs[i].mn].x}, ls[i].resize(n[plcs[i].lr[0]].sz), rs[i].resize(n[plcs[i].lr[1]].sz), dump(ls[i].begin(), plcs[i].lr[0]), dump(rs[i].begin(), plcs[i].lr[1]);
  ni= 1;
  for (int i= m; i--;) (plcs[i].mn ? (plcs[i].mn= create(mns[i].first, mns[i].second)) : 0), plcs[i].lr[0]= build(ls[i].begin(), ls[i].end()), plcs[i].lr[1]= build(rs[i].begin(), rs[i].end());
 }
 static void reset() { ni= 1; }
 static bool pool_empty() {
  if constexpr (persistent) return ni >= NODE_SIZE * 0.8;
  else return ni + 1000 >= NODE_SIZE;
 }
 // f(x) += c
 void add_const(D c) { y+= c; }
 // f(x) += ax, /
 void add_linear(T a) { rem+= a; }
 //  f(x) += max(a(x-x0),b(x-x0)), (a < b)
 void add_max(T a, T b, T x0) {
  assert(a < b);
  if (bf[0] && x0 <= bx[0]) y-= D(b) * x0, rem+= b;
  else if (bf[1] && bx[1] <= x0) y-= D(a) * x0, rem+= a;
  else if (T c= b - a; mn) {
   if (n[mn].x == x0) {
    if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
    n[mn].d+= c, o[1]+= c, y-= D(a) * x0, rem+= a;
   } else {
    if (n[mn].x < x0) lr[1]= insert(lr[1], x0, c), y-= D(a) * x0, rem+= a;
    else lr[0]= insert(lr[0], x0, c), y-= D(b) * x0, rem+= b;
   }
  } else mn= create(c, x0), y-= D(a) * x0, rem+= a, o[0]= 0, o[1]= c;
 }
 // f(x) +=  max(0, a(x-x0))
 void add_ramp(T a, T x0) {
  if (a != 0) a > 0 ? add_max(0, a, x0) : add_max(a, 0, x0);
 }
 // f(x) += a|x-x0|, \/
 void add_abs(T a, T x0) {
  if (assert(a >= 0); a != 0) add_max(-a, a, x0);
 }
 // right=false : f(x) +=  inf  (x < x_0), right=true: f(x) += inf  (x_0 < x)
 void add_inf(bool right= false, T x0= 0) { return right ? add_inf<1>(x0) : add_inf<0>(x0); }
 // f(x) <- f(x-x0)
 void shift(T x0) {
  if (bx[0]+= x0, bx[1]+= x0, y-= D(rem) * x0; mn) prop(x0), prop(lr[0], x0), prop(lr[1], x0);
 }
 // rev=false: f(x) <- min_{y<=x} f(y), rev=true : f(x) <- min_{x<=y} f(y)
 void chmin_cum(bool rev= false) {
  if (bf[0] && bf[1] && bx[0] == bx[1]) y+= D(rem) * bx[0], rem= 0;
  else if (rem != 0) {
   bool r= rem < 0;
   T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
   if (0 <= u) {
    if (r ^ rev) {
     if (u > 0 && bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]);
      o[!r]= u, rem= 0, mn= create(u, bx[r]);
     }
    } else {
     assert(bf[r]);
     D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
     (r ? y-= q : y+= q), rem= 0, mn= lr[r]= 0, o[r]= 0;
    }
    bf[!rev]= false;
    return;
   }
   if ((r ^ rev)) r ? slope_eval_cum<0, 1>() : slope_eval_cum<0, 0>();
   else r ? slope_eval_cum<1, 1>() : slope_eval_cum<1, 0>();
   if constexpr (persistent) mn= create(o[rev], n[mn].x);
   else n[mn].d= o[rev];
  } else if (mn) {
   if (o[rev] == 0) {
    if (lr[rev]) std::tie(lr[rev], mn)= rev ? pop<0>(lr[rev]) : pop<1>(lr[rev]), o[rev]= n[mn].d;
    else mn= 0;
   } else {
    if constexpr (persistent) mn= create(o[rev], n[mn].x);
    else n[mn].d= o[rev];
   }
  }
  bf[!rev]= false, lr[!rev]= 0, o[!rev]= 0;
 }
 //  f(x) <- min_{lb<=y<=ub} f(x-y). (lb <= ub), \_/ -> \__/
 void chmin_slide_win(T lb, T ub) {
  assert(lb <= ub);
  if (bf[0] && bf[1] && bx[0] == bx[1]) y+= D(rem) * bx[0], rem= 0;
  else {
   if (rem != 0) {
    bool r= rem < 0;
    T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
    if (0 < u) {
     T b[2]= {lb, ub};
     if (bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]), prop<0>(lr[!r], b[!r]);
      lr[r]= 0, rem= 0, o[!r]= u, o[r]= 0, mn= create(u, bx[r] + b[!r]);
     } else {
      y-= D(rem) * b[!r];
      if (mn) prop(b[!r]), prop(lr[0], b[!r]), prop(lr[1], b[!r]);
     }
     bx[0]+= lb, bx[1]+= ub;
     return;
    }
    slope_eval(r);
   }
   if (mn) {
    if (o[0] == 0) prop(ub);
    else if (o[1] == 0) prop(lb);
    else lr[1]= join<0>(0, create(o[1], n[mn].x), lr[1]), prop(lb), n[mn].d= o[0], o[1]= 0;
    prop(lr[0], lb), prop(lr[1], ub);
   }
  }
  bx[0]+= lb, bx[1]+= ub;
 }
 D operator()(T x) { return assert(!bf[0] || bx[0] <= x), assert(!bf[1] || x <= bx[1]), calc_y(x) + D(rem) * x + y; }
 D min() {
  if (rem == 0) return y;
  bool r= rem < 0;
  T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
  if (0 < u) {
   assert(bf[r]);
   D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
   return r ? y - q : y + q;
  }
  return slope_eval(r), y;
 }
 std::array<T, 2> argmin() {
  if (rem != 0) {
   bool r= rem < 0;
   if (o[r] + n[lr[r]].a < (r ? -rem : rem)) {
    assert(bf[r]);
    return {bx[r], bx[r]};
   }
   slope_eval(r);
  }
  std::array<T, 2> ret= {bx[0], bx[1]};
  int t= mn;
  if (!t) return ret;
  bool r= o[0] == 0;
  if (!r && o[1] != 0) ret[0]= ret[1]= n[t].x;
  else if (ret[r]= n[t].x, t= lr[!r]; t) {
   for (; push(t), n[t].ch[r];) t= n[t].ch[r];
   ret[!r]= n[t].x;
  } else assert(bf[!r]);
  return ret;
 }
 size_t size() { return n[lr[0]].sz + n[lr[1]].sz + !!mn; }
 PiecewiseLinearConvex &operator+=(const PiecewiseLinearConvex &g) { return *this= *this + g; }
 PiecewiseLinearConvex operator+(PiecewiseLinearConvex g) const {
  PiecewiseLinearConvex ret= *this;
  if (g.bf[0]) ret.add_inf(false, g.bx[0]);
  if (g.bf[1]) ret.add_inf(true, g.bx[1]);
  if (bf[0]) g.add_inf(false, bx[0]);
  if (bf[1]) g.add_inf(true, bx[1]);
  ret.y+= g.y, ret.rem+= g.rem;
  if (!g.mn) return ret;
  if (!ret.mn) return ret.mn= g.mn, ret.lr[0]= g.lr[0], ret.lr[1]= g.lr[1], ret.o[0]= g.o[0], ret.o[1]= g.o[1], ret;
  ret.y+= n[ret.lr[0]].s + D(n[ret.mn].x) * ret.o[0] + n[g.lr[0]].s + D(n[g.mn].x) * g.o[0], ret.rem-= ret.o[0] + n[ret.lr[0]].a + g.o[0] + n[g.lr[0]].a;
  int t= unite(join(ret.lr[0], ret.mn, ret.lr[1]), join(g.lr[0], g.mn, g.lr[1]));
  return std::tie(ret.lr[1], ret.mn)= pop<0>(t), ret.lr[0]= 0, ret.o[0]= 0, ret.o[1]= n[ret.mn].d, ret;
 }
 std::vector<T> dump_xs() {
  std::vector<T> xs;
  if (bf[0]) xs.push_back(bx[0]);
  dump_xs(lr[0], xs);
  if (mn) xs.push_back(n[mn].x);
  dump_xs(lr[1], xs);
  if (bf[1]) xs.push_back(bx[1]);
  return xs;
 }
 std::vector<std::pair<T, D>> dump_xys() {
  auto xs= dump_xs();
  std::vector<std::pair<T, D>> xys(xs.size());
  for (int i= xs.size(); i--;) xys[i]= {xs[i], operator()(xs[i])};
  return xys;
 }
 std::vector<T> dump_slopes() {
  std::vector<T> as;
  if (mn) as.push_back(-o[0]), dump_slopes_l(lr[0], o[0], as), std::reverse(as.begin(), as.end()), as.push_back(o[1]), dump_slopes_r(lr[1], o[1], as);
  else as.push_back(0);
  for (auto &a: as) a+= rem;
  return as;
 }
};
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N;
 cin >> N;
 PiecewiseLinearConvex<long long> f;
 for (int i= 0; i < N; ++i) {
  int a, b;
  cin >> a >> b;
  f.add_inf();
  f.add_linear(a - b);
  f.chmin_slide_win(-1, 1);
 }
 cout << -f.min() << '\n';
 return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 19 ms 2652 KB Output is correct
5 Correct 49 ms 5972 KB Output is correct
6 Correct 100 ms 5720 KB Output is correct
7 Correct 88 ms 4316 KB Output is correct
8 Correct 305 ms 15188 KB Output is correct
9 Correct 129 ms 10320 KB Output is correct
10 Correct 47 ms 9212 KB Output is correct
11 Correct 44 ms 10024 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 19 ms 2652 KB Output is correct
5 Correct 49 ms 5972 KB Output is correct
6 Correct 100 ms 5720 KB Output is correct
7 Correct 88 ms 4316 KB Output is correct
8 Correct 305 ms 15188 KB Output is correct
9 Correct 129 ms 10320 KB Output is correct
10 Correct 47 ms 9212 KB Output is correct
11 Correct 44 ms 10024 KB Output is correct
12 Correct 71 ms 5460 KB Output is correct
13 Correct 174 ms 13400 KB Output is correct
14 Correct 94 ms 4948 KB Output is correct
15 Correct 436 ms 29524 KB Output is correct
16 Correct 320 ms 23476 KB Output is correct
17 Correct 35 ms 2904 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 2 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
16 Correct 2 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 19 ms 2652 KB Output is correct
12 Correct 49 ms 5972 KB Output is correct
13 Correct 100 ms 5720 KB Output is correct
14 Correct 88 ms 4316 KB Output is correct
15 Correct 305 ms 15188 KB Output is correct
16 Correct 129 ms 10320 KB Output is correct
17 Correct 47 ms 9212 KB Output is correct
18 Correct 44 ms 10024 KB Output is correct
19 Correct 71 ms 5460 KB Output is correct
20 Correct 174 ms 13400 KB Output is correct
21 Correct 94 ms 4948 KB Output is correct
22 Correct 436 ms 29524 KB Output is correct
23 Correct 320 ms 23476 KB Output is correct
24 Correct 35 ms 2904 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 3 ms 604 KB Output is correct
29 Correct 2 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 1 ms 348 KB Output is correct
32 Correct 1 ms 348 KB Output is correct
33 Correct 76 ms 9112 KB Output is correct
34 Correct 214 ms 17748 KB Output is correct
35 Correct 365 ms 27220 KB Output is correct
36 Correct 393 ms 28868 KB Output is correct
37 Correct 318 ms 20492 KB Output is correct
38 Correct 342 ms 28128 KB Output is correct
39 Correct 166 ms 11856 KB Output is correct
40 Correct 195 ms 22096 KB Output is correct
41 Correct 50 ms 12372 KB Output is correct
42 Correct 48 ms 11568 KB Output is correct
43 Correct 43 ms 8020 KB Output is correct
44 Correct 43 ms 8528 KB Output is correct
45 Correct 339 ms 23380 KB Output is correct
46 Correct 74 ms 7508 KB Output is correct
47 Correct 240 ms 23636 KB Output is correct