#include <bits/stdc++.h>
#define int long long
using namespace std;
const int Nmax=300010, S=(1<<19), INF=1e18;
int N, R, A, B, X[Nmax];
int Da[Nmax], Da2[Nmax], Db[Nmax];
vector<int> adj[Nmax];
/*int F(int i, int j);
int G(int i);*/
class Seg {
public:
Seg() {fill(Tree+1, Tree+2*S, INF);}
void Update(int k, int v) {Update(1, 1, S, k, v);}
int Query(int l, int r) {return Query(1, 1, S, l, r);}
private:
int Tree[2*S];
void Update(int node, int s, int e, int k, int v) {
if(s==e) {
Tree[node]=v; return;
}
int lch=2*node, rch=lch+1, m=(s+e)/2;
if(k<=m) Update(lch, s, m, k, v);
else Update(rch, m+1, e, k, v);
Tree[node]=min(Tree[lch], Tree[rch]);
}
int Query(int node, int s, int e, int l, int r) {
if(s>r || l>e) return INF;
if(l<=s && e<=r) return Tree[node];
int lch=2*node, rch=lch+1, m=(s+e)/2;
return min(Query(lch, s, m, l, r), Query(rch, m+1, e, l, r));
}
}T, Da_T, Da2_T;
signed main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin>>N>>R>>A>>B;
if(A<=B) {
cout<<1; return 0;
}
for(int i=1; i<N; i++) {
int u, v; cin>>u>>v;
adj[u].push_back(v), adj[v].push_back(u);
}
X[1]=R;
for(int i=1; i<N; i++) X[i+1]=((adj[X[i]][0]==X[i-1])?adj[X[i]][1]:adj[X[i]][0]);
for(int i=1; i<=N; i++) T.Update(i, X[i]);
for(int i=N; i>=1; i--) {
if(i+A<=N) Da[i]=Db[i+A];
else Da[i]=T.Query(i, i+B);
Da2[i]=X[i]; // minQuery
Da_T.Update(i, Da[i]), Da2_T.Update(i, Da2[i]);
if(i+B>N) continue;
int j=i+B;
Db[j]=min(Da2_T.Query(j-B, j-1), Da_T.Query(j, j+B));
}
cout<<Da[1];
return 0;
}
/*int F(int i, int j) {
if(chka[i][j]) return Da[i][j];
chka[i][j]=true;
bool flag=true;
for(int k=1; k<=N; k++) if(dep[k]==dep[i]+A && l[i]<=l[k] && l[k]<=r[i] && !(l[j]<=l[k] && l[k]<=r[j]))
Da[i][j]=max(Da[i][j], G(k)), flag=false;
// -> i의 자식 중 i까지의 거리가 A인 점들에 대한 쿼리 -> BFS Ordering으로 처리 가능
if(flag) {
Da[i][j]=Nmax;
for(int k=1; k<=N; k++) if(dep[k]<=dep[i]+B && l[i]<=l[k] && l[k]<=r[i] && !(l[j]<=l[k] && l[k]<=r[j]))
Da[i][j]=min(Da[i][j], k);
// -> i의 자식 중 i까지의 거리가 B 이하인 점들의 최솟값 -> 그냥 처리 가능
}
return Da[i][j];
}
int G(int i) {
if(chkb[i]) return Db[i];
chkb[i]=true;
bool chk[Nmax]={0};
Db[i]=Nmax;
for(int j=i; dep[i]-dep[j]<B; j=par[j]) Db[i]=min(Db[i], F(par[j], j)), chk[par[j]]=true;
// i부터 i로부터 B만큼 높은 부모까지의 쿼리 -> HLD로 처리 가능
for(int j=1; j<=N; j++) if(Dist(i, j)<=B && !chk[j])
Db[i]=min(Db[i], F(j, 0));
// i부터 i까지의 거리가 B 이하인 점들에 대한 쿼리
// 원 쿼리는 Centroid Decomposition + BFS Ordering으로 처리 가능
return Db[i];
}
// 이건 좀 아닌 것 같음.
// 최종 시간 복잡도 O(Nlog^2N)에 해결이 가능은 함*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
33368 KB |
Output is correct |
2 |
Correct |
4 ms |
33372 KB |
Output is correct |
3 |
Correct |
4 ms |
33248 KB |
Output is correct |
4 |
Correct |
4 ms |
33368 KB |
Output is correct |
5 |
Correct |
4 ms |
33372 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
203 ms |
50768 KB |
Output is correct |
2 |
Correct |
175 ms |
54864 KB |
Output is correct |
3 |
Correct |
171 ms |
54632 KB |
Output is correct |
4 |
Correct |
209 ms |
54608 KB |
Output is correct |
5 |
Correct |
188 ms |
54100 KB |
Output is correct |
6 |
Correct |
239 ms |
54612 KB |
Output is correct |
7 |
Correct |
236 ms |
54608 KB |
Output is correct |
8 |
Correct |
201 ms |
54636 KB |
Output is correct |
9 |
Correct |
4 ms |
33368 KB |
Output is correct |
10 |
Correct |
171 ms |
54740 KB |
Output is correct |
11 |
Correct |
204 ms |
54672 KB |
Output is correct |
12 |
Correct |
4 ms |
33372 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Runtime error |
25 ms |
71624 KB |
Execution killed with signal 11 |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Runtime error |
25 ms |
71624 KB |
Execution killed with signal 11 |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Runtime error |
49 ms |
79040 KB |
Execution killed with signal 11 |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Runtime error |
25 ms |
71624 KB |
Execution killed with signal 11 |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
33368 KB |
Output is correct |
2 |
Correct |
4 ms |
33372 KB |
Output is correct |
3 |
Correct |
4 ms |
33248 KB |
Output is correct |
4 |
Correct |
4 ms |
33368 KB |
Output is correct |
5 |
Correct |
4 ms |
33372 KB |
Output is correct |
6 |
Correct |
203 ms |
50768 KB |
Output is correct |
7 |
Correct |
175 ms |
54864 KB |
Output is correct |
8 |
Correct |
171 ms |
54632 KB |
Output is correct |
9 |
Correct |
209 ms |
54608 KB |
Output is correct |
10 |
Correct |
188 ms |
54100 KB |
Output is correct |
11 |
Correct |
239 ms |
54612 KB |
Output is correct |
12 |
Correct |
236 ms |
54608 KB |
Output is correct |
13 |
Correct |
201 ms |
54636 KB |
Output is correct |
14 |
Correct |
4 ms |
33368 KB |
Output is correct |
15 |
Correct |
171 ms |
54740 KB |
Output is correct |
16 |
Correct |
204 ms |
54672 KB |
Output is correct |
17 |
Correct |
4 ms |
33372 KB |
Output is correct |
18 |
Runtime error |
25 ms |
71624 KB |
Execution killed with signal 11 |
19 |
Halted |
0 ms |
0 KB |
- |