답안 #1053433

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1053433 2024-08-11T11:44:35 Z elazarkoren Petrol stations (CEOI24_stations) C++17
100 / 100
599 ms 22728 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#define x first
#define y second
#define all(v) v.begin(), v.end()
#define chkmin(a, b) a = min(a, b)
#define chkmax(a, b) a = max(a, b)
#define int ll
using namespace std;
//using namespace __gnu_pbds;
typedef long long ll;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef pair<ll, ll> pii;
typedef vector<pii> vii;
typedef vector<bool> vb;
typedef __gnu_pbds::tree<pii, __gnu_pbds::null_type, less<pii>, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update> ordered_set;

const int MAX_N = 1e5 + 5;

struct Seg {
    vi seg;
    int n;
    Seg() {}
    Seg(int m) {
        n = m;
        seg.resize(2 * n);
    }
    void Update(int i, ll x) {
        seg[i += n] = x;
        for (i >>= 1; i; i >>= 1) {
            seg[i] = seg[i << 1] + seg[i << 1 | 1];
        }
    }
    ll Query(int l, int r) {
        ll ans = 0;
        for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
            if (l & 1) ans += seg[l++];
            if (r & 1) ans += seg[--r];
        }
        return ans;
    }
};

ll ans[MAX_N];
vii tree[MAX_N];
ll sz[MAX_N], real_sz[MAX_N];
bool visited[MAX_N];
int n, k;

int RealDfsSz(int node, int parent) {
    real_sz[node] = 1;
    for (auto [neighbor, w] : tree[node]) {
        if (neighbor != parent && !visited[neighbor]) {
            real_sz[node] += RealDfsSz(neighbor, node);
        }
    }
    return real_sz[node];
}

int DfsSz(int node, int parent) {
    sz[node] = 1;
    for (auto [neighbor, w] : tree[node]) {
        if (neighbor != parent && !visited[neighbor]) {
            sz[node] += DfsSz(neighbor, node);
        }
    }
    return sz[node];
}

int FindCentroid(int node) {
    int s = DfsSz(node, -1);
    int par = node;
    while (true) {
        bool ok = true;
        for (auto [neighbor, w] : tree[node]) {
            if (visited[neighbor] || neighbor == par) continue;
            if (sz[neighbor] > s / 2) {
                par = node;
                node = neighbor;
                ok = false;
                break;
            }
        }
        if (ok) break;
    }
    return node;
}

int tim;
ordered_set se;

int dp[MAX_N];
void CalcDp(int node, int parent, int d, vii &stk) {
    if (d <= k) {
        dp[node] = d;
    } else {
//        int begin = 0, end = stk.size(), mid;
//        while (begin < end) {
//            mid = (begin + end) >> 1;
//            if (d - stk[mid].x <= k) end = mid;
//            else begin = mid + 1;
//        }
        dp[node] = lower_bound(all(stk), pii(d - k, 0))->y;
    }
    stk.push_back({d, dp[node]});
    for (auto [neighbor, w] : tree[node]) {
        if (neighbor != parent && !visited[neighbor]) {
            CalcDp(neighbor, node, d + w, stk);
        }
    }
    stk.pop_back();
}

void Add(int node, int parent) {
    se.insert({dp[node], tim++});
    for (auto [neighbor, w] : tree[node]) {
        if (neighbor != parent && !visited[neighbor]) {
            Add(neighbor, node);
        }
    }
}

void Erase(int node, int parent) {
    se.erase(se.lower_bound({dp[node], 0}));
    for (auto [neighbor, w] : tree[node]) {
        if (neighbor != parent && !visited[neighbor]) {
            Erase(neighbor, node);
        }
    }
}

ll dp2[MAX_N];
Seg seg;

void Solve(int node, int parent, int d1, int d2, vi &stk) {
    dp2[parent] = 0;
    if (d2 <= k) {
        ll cnt = se.order_of_key({k - d2 + 1, 0}) - se.order_of_key({k - d1 + 1, 0});
        dp2[parent] = cnt;
    }
    int r = lower_bound(all(stk), d1 - k) - stk.begin();
    int l = lower_bound(all(stk), d2 - k) - stk.begin();
    dp2[parent] += seg.Query(l, r);

    ll s = real_sz[node] < real_sz[parent] ? real_sz[node] : (n - real_sz[parent]);
    ans[parent] += dp2[parent] * s;
    if (visited[node]) return;
    seg.Update(stk.size(), dp2[parent]);
    stk.push_back(d2);
    for (auto [neighbor, w] : tree[node]) {
        if (neighbor != parent) {
            Solve(neighbor, node, d1 + w, d1, stk);
        }
    }
    stk.pop_back();
}

void CentroidDecomposition(int node) {
    if (visited[node]) return;
    int centroid = FindCentroid(node);
    vii stk;
    CalcDp(centroid, -1, 0, stk);
    dp[centroid] = 0;
    Add(centroid, -1);
    DfsSz(centroid, -1);
    for (auto [neighbor, w] : tree[centroid]) {
        if (!visited[neighbor]) Erase(neighbor, centroid);
        vi st;
        Solve(neighbor, centroid, w, 0, st);
        if (!visited[neighbor]) Add(neighbor, centroid);
    }
    se.clear();

    visited[centroid] = true;
    for (auto [neighbor, w] : tree[centroid]) {
        CentroidDecomposition(neighbor);
    }
}

int32_t main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> k;
    for (int i = 0; i < n - 1; i++) {
        int u = (i + 1), v = i / 2, l = rand() % k + 1;
//        cout << l << ' ';
        cin >> u >> v >> l;
        tree[u].push_back({v, l});
        tree[v].push_back({u, l});
    }
    seg = Seg(2 * n);
    RealDfsSz(0, -1);
    CentroidDecomposition(0);
    for (int i = 0; i < n; i++) cout << ans[i] << '\n';
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 3 ms 6488 KB Output is correct
4 Correct 3 ms 6764 KB Output is correct
5 Correct 2 ms 6748 KB Output is correct
6 Correct 4 ms 6684 KB Output is correct
7 Correct 3 ms 6744 KB Output is correct
8 Correct 1 ms 6492 KB Output is correct
9 Correct 3 ms 6748 KB Output is correct
10 Correct 3 ms 6748 KB Output is correct
11 Correct 3 ms 6748 KB Output is correct
12 Correct 3 ms 6748 KB Output is correct
13 Correct 3 ms 6748 KB Output is correct
14 Correct 1 ms 6748 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6488 KB Output is correct
2 Correct 522 ms 21944 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6488 KB Output is correct
4 Correct 522 ms 21944 KB Output is correct
5 Correct 599 ms 21704 KB Output is correct
6 Correct 573 ms 21704 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 456 ms 17228 KB Output is correct
4 Correct 590 ms 22728 KB Output is correct
5 Correct 574 ms 22728 KB Output is correct
6 Correct 1 ms 6488 KB Output is correct
7 Correct 428 ms 18004 KB Output is correct
8 Correct 458 ms 18300 KB Output is correct
9 Correct 450 ms 18452 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 456 ms 17228 KB Output is correct
4 Correct 590 ms 22728 KB Output is correct
5 Correct 574 ms 22728 KB Output is correct
6 Correct 1 ms 6488 KB Output is correct
7 Correct 428 ms 18004 KB Output is correct
8 Correct 458 ms 18300 KB Output is correct
9 Correct 450 ms 18452 KB Output is correct
10 Correct 285 ms 18260 KB Output is correct
11 Correct 297 ms 18148 KB Output is correct
12 Correct 318 ms 17936 KB Output is correct
13 Correct 335 ms 18148 KB Output is correct
14 Correct 338 ms 18224 KB Output is correct
15 Correct 295 ms 18000 KB Output is correct
16 Correct 67 ms 17684 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 3 ms 6488 KB Output is correct
4 Correct 3 ms 6764 KB Output is correct
5 Correct 2 ms 6748 KB Output is correct
6 Correct 4 ms 6684 KB Output is correct
7 Correct 3 ms 6744 KB Output is correct
8 Correct 1 ms 6492 KB Output is correct
9 Correct 3 ms 6748 KB Output is correct
10 Correct 3 ms 6748 KB Output is correct
11 Correct 3 ms 6748 KB Output is correct
12 Correct 3 ms 6748 KB Output is correct
13 Correct 3 ms 6748 KB Output is correct
14 Correct 1 ms 6748 KB Output is correct
15 Correct 1 ms 6488 KB Output is correct
16 Correct 522 ms 21944 KB Output is correct
17 Correct 599 ms 21704 KB Output is correct
18 Correct 573 ms 21704 KB Output is correct
19 Correct 456 ms 17228 KB Output is correct
20 Correct 590 ms 22728 KB Output is correct
21 Correct 574 ms 22728 KB Output is correct
22 Correct 1 ms 6488 KB Output is correct
23 Correct 428 ms 18004 KB Output is correct
24 Correct 458 ms 18300 KB Output is correct
25 Correct 450 ms 18452 KB Output is correct
26 Correct 285 ms 18260 KB Output is correct
27 Correct 297 ms 18148 KB Output is correct
28 Correct 318 ms 17936 KB Output is correct
29 Correct 335 ms 18148 KB Output is correct
30 Correct 338 ms 18224 KB Output is correct
31 Correct 295 ms 18000 KB Output is correct
32 Correct 67 ms 17684 KB Output is correct
33 Correct 460 ms 18144 KB Output is correct
34 Correct 268 ms 19016 KB Output is correct
35 Correct 303 ms 18512 KB Output is correct
36 Correct 297 ms 18516 KB Output is correct
37 Correct 359 ms 18260 KB Output is correct
38 Correct 401 ms 18256 KB Output is correct
39 Correct 369 ms 18260 KB Output is correct
40 Correct 85 ms 18108 KB Output is correct