이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#define x first
#define y second
#define all(v) v.begin(), v.end()
#define chkmin(a, b) a = min(a, b)
#define chkmax(a, b) a = max(a, b)
#define int ll
using namespace std;
//using namespace __gnu_pbds;
typedef long long ll;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef pair<ll, ll> pii;
typedef vector<pii> vii;
typedef vector<bool> vb;
typedef __gnu_pbds::tree<pii, __gnu_pbds::null_type, less<pii>, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update> ordered_set;
const int MAX_N = 1e5 + 5;
struct Seg {
vi seg;
int n;
Seg() {}
Seg(int m) {
n = m;
seg.resize(2 * n);
}
void Update(int i, ll x) {
seg[i += n] = x;
for (i >>= 1; i; i >>= 1) {
seg[i] = seg[i << 1] + seg[i << 1 | 1];
}
}
ll Query(int l, int r) {
ll ans = 0;
for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
if (l & 1) ans += seg[l++];
if (r & 1) ans += seg[--r];
}
return ans;
}
};
ll ans[MAX_N];
vii tree[MAX_N];
ll sz[MAX_N], real_sz[MAX_N];
bool visited[MAX_N];
int n, k;
int RealDfsSz(int node, int parent) {
real_sz[node] = 1;
for (auto [neighbor, w] : tree[node]) {
if (neighbor != parent && !visited[neighbor]) {
real_sz[node] += RealDfsSz(neighbor, node);
}
}
return real_sz[node];
}
int DfsSz(int node, int parent) {
sz[node] = 1;
for (auto [neighbor, w] : tree[node]) {
if (neighbor != parent && !visited[neighbor]) {
sz[node] += DfsSz(neighbor, node);
}
}
return sz[node];
}
int FindCentroid(int node) {
int s = DfsSz(node, -1);
int par = node;
while (true) {
bool ok = true;
for (auto [neighbor, w] : tree[node]) {
if (visited[neighbor] || neighbor == par) continue;
if (sz[neighbor] > s / 2) {
par = node;
node = neighbor;
ok = false;
break;
}
}
if (ok) break;
}
return node;
}
int tim;
ordered_set se;
int dp[MAX_N];
void CalcDp(int node, int parent, int d, vii &stk) {
if (d <= k) {
dp[node] = d;
} else {
// int begin = 0, end = stk.size(), mid;
// while (begin < end) {
// mid = (begin + end) >> 1;
// if (d - stk[mid].x <= k) end = mid;
// else begin = mid + 1;
// }
dp[node] = lower_bound(all(stk), pii(d - k, 0))->y;
}
stk.push_back({d, dp[node]});
for (auto [neighbor, w] : tree[node]) {
if (neighbor != parent && !visited[neighbor]) {
CalcDp(neighbor, node, d + w, stk);
}
}
stk.pop_back();
}
void Add(int node, int parent) {
se.insert({dp[node], tim++});
for (auto [neighbor, w] : tree[node]) {
if (neighbor != parent && !visited[neighbor]) {
Add(neighbor, node);
}
}
}
void Erase(int node, int parent) {
se.erase(se.lower_bound({dp[node], 0}));
for (auto [neighbor, w] : tree[node]) {
if (neighbor != parent && !visited[neighbor]) {
Erase(neighbor, node);
}
}
}
ll dp2[MAX_N];
Seg seg;
void Solve(int node, int parent, int d1, int d2, vi &stk) {
dp2[parent] = 0;
if (d2 <= k) {
ll cnt = se.order_of_key({k - d2 + 1, 0}) - se.order_of_key({k - d1 + 1, 0});
dp2[parent] = cnt;
}
int r = lower_bound(all(stk), d1 - k + 1) - stk.begin();
int l = lower_bound(all(stk), d2 - k) - stk.begin();
dp2[parent] += seg.Query(l, r);
ll s = real_sz[node] < real_sz[parent] ? real_sz[node] : (n - real_sz[parent]);
ans[parent] += dp2[parent] * s;
if (visited[node]) return;
seg.Update(stk.size(), dp2[parent]);
stk.push_back(d2);
for (auto [neighbor, w] : tree[node]) {
if (neighbor != parent) {
Solve(neighbor, node, d1 + w, d1, stk);
}
}
stk.pop_back();
}
void CentroidDecomposition(int node) {
if (visited[node]) return;
int centroid = FindCentroid(node);
vii stk;
CalcDp(centroid, -1, 0, stk);
dp[centroid] = 0;
Add(centroid, -1);
DfsSz(centroid, -1);
for (auto [neighbor, w] : tree[centroid]) {
if (!visited[neighbor]) Erase(neighbor, centroid);
vi st;
Solve(neighbor, centroid, w, 0, st);
if (!visited[neighbor]) Add(neighbor, centroid);
}
se.clear();
visited[centroid] = true;
for (auto [neighbor, w] : tree[centroid]) {
CentroidDecomposition(neighbor);
}
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n >> k;
for (int i = 0; i < n - 1; i++) {
int u = i, v = i + 1, l = 1;
cin >> u >> v >> l;
tree[u].push_back({v, l});
tree[v].push_back({u, l});
}
seg = Seg(2 * n);
RealDfsSz(0, -1);
CentroidDecomposition(0);
for (int i = 0; i < n; i++) cout << ans[i] << '\n';
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |