답안 #1051081

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1051081 2024-08-09T19:22:33 Z beaconmc Spy 3 (JOI24_spy3) C++17
23 / 100
162 ms 9248 KB
#include "Aoi.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;

namespace {

const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<vector<ll>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];


}  // namespace


string aoi(int N, int M, int Q, int K, vector<int> A,vector<int> B, vector<long long> C,
                vector<int> T, vector<int> X) {
    string ans;

    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){
        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
 
            if (node[1] == T[i]) break;

            pq.pop();
            node[0] = -node[0];
            if (node[0] != dists[node[1]]) continue;
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }
        unordered_set<ll> stuff;
        ll cur = T[i];

        
        while (prevs[cur][1] != -1){
            stuff.insert(prevs[cur][1]);
            cur = prevs[cur][0];
        }


        FOR(j,0,K){
            if (stuff.count(X[j])) ans += '1';
            else ans += '0';
        }

    }
    return ans;


}
#include "Bitaro.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;
namespace {
const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<array<ll,3>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];
}  // namespace




void bitaro(int N, int M, int Q, int K, vector<int> A, vector<int> B,
            vector<long long> C, vector<int> T, vector<int> X,
            string s) {



    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){

        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;
        unordered_set<ll> idk;
        FOR(j, K*i, K*(i+1)){
            if (s[j] == '1') idk.insert(X[j-K*i]);
        }

        unordered_set<ll> idkman;
        for (auto&i : X) idkman.insert(i);

        FOR(i,0,maxn){
            for (auto&j : edges[i]){
                if (idk.count(j[2])) j[1] = 1;
                else if (idkman.count(j[2])) j[1] = INF;
            }
           

        }


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
            if (node[1] == T[i]) break;
            pq.pop();
            node[0] = -node[0];
             if (node[0] != dists[node[1]]) continue;
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }

        vector<int> stuff;

        ll cur = T[i];
        
        while (prevs[cur][1] != -1){
            stuff.push_back(prevs[cur][1]);
            cur = prevs[cur][0];
        }

        reverse(stuff.begin(), stuff.end());

        answer(stuff);



    }


}
# 결과 실행 시간 메모리 Grader output
1 Partially correct 23 ms 7612 KB Partially correct
2 Correct 2 ms 2316 KB Output is correct
3 Partially correct 61 ms 7228 KB Partially correct
4 Partially correct 55 ms 7116 KB Partially correct
5 Partially correct 74 ms 7096 KB Partially correct
6 Partially correct 68 ms 7104 KB Partially correct
7 Partially correct 62 ms 7096 KB Partially correct
8 Partially correct 65 ms 7112 KB Partially correct
9 Partially correct 61 ms 7096 KB Partially correct
10 Correct 22 ms 7136 KB Output is correct
11 Partially correct 63 ms 7096 KB Partially correct
12 Correct 72 ms 7352 KB Output is correct
13 Partially correct 63 ms 7148 KB Partially correct
14 Partially correct 56 ms 7096 KB Partially correct
15 Correct 58 ms 7148 KB Output is correct
16 Correct 17 ms 6840 KB Output is correct
17 Partially correct 89 ms 7420 KB Partially correct
18 Partially correct 90 ms 7320 KB Partially correct
19 Partially correct 121 ms 9000 KB Partially correct
20 Partially correct 89 ms 8916 KB Partially correct
21 Partially correct 117 ms 8984 KB Partially correct
22 Partially correct 162 ms 9004 KB Partially correct
23 Partially correct 100 ms 9044 KB Partially correct
24 Partially correct 153 ms 9036 KB Partially correct
25 Partially correct 96 ms 7440 KB Partially correct
26 Partially correct 124 ms 7688 KB Partially correct
27 Correct 4 ms 2320 KB Output is correct
28 Partially correct 51 ms 7788 KB Partially correct
29 Partially correct 36 ms 5736 KB Partially correct
30 Correct 54 ms 7780 KB Output is correct
31 Correct 32 ms 7856 KB Output is correct
32 Partially correct 60 ms 7604 KB Partially correct
33 Correct 74 ms 7400 KB Output is correct
34 Partially correct 68 ms 8088 KB Partially correct
35 Correct 53 ms 7836 KB Output is correct
36 Partially correct 59 ms 7828 KB Partially correct
37 Partially correct 19 ms 4904 KB Partially correct
38 Partially correct 47 ms 5740 KB Partially correct
39 Partially correct 41 ms 5900 KB Partially correct
40 Correct 11 ms 5264 KB Output is correct
41 Partially correct 54 ms 8424 KB Partially correct
42 Partially correct 40 ms 8576 KB Partially correct
43 Correct 80 ms 8972 KB Output is correct
44 Correct 20 ms 8172 KB Output is correct
45 Partially correct 29 ms 4908 KB Partially correct
46 Partially correct 37 ms 5412 KB Partially correct
47 Correct 35 ms 5256 KB Output is correct
48 Correct 2 ms 2316 KB Output is correct
49 Correct 3 ms 2324 KB Output is correct
50 Partially correct 18 ms 7412 KB Partially correct
51 Partially correct 6 ms 2992 KB Partially correct
52 Partially correct 4 ms 2520 KB Partially correct
53 Partially correct 32 ms 7680 KB Partially correct
54 Partially correct 19 ms 6136 KB Partially correct
55 Partially correct 49 ms 6832 KB Partially correct
56 Partially correct 38 ms 8116 KB Partially correct
57 Partially correct 75 ms 8696 KB Partially correct
58 Partially correct 54 ms 6960 KB Partially correct
59 Partially correct 90 ms 8792 KB Partially correct
60 Partially correct 67 ms 8328 KB Partially correct
61 Partially correct 67 ms 8696 KB Partially correct
62 Partially correct 69 ms 8344 KB Partially correct
63 Partially correct 90 ms 8768 KB Partially correct
64 Correct 18 ms 7496 KB Output is correct
65 Partially correct 60 ms 6816 KB Partially correct
66 Partially correct 36 ms 9248 KB Partially correct
67 Partially correct 64 ms 6788 KB Partially correct
68 Partially correct 43 ms 9132 KB Partially correct
69 Correct 2 ms 2316 KB Output is correct
70 Correct 2 ms 2316 KB Output is correct
71 Correct 3 ms 2320 KB Output is correct
72 Partially correct 20 ms 4868 KB Partially correct
73 Partially correct 45 ms 5304 KB Partially correct
74 Partially correct 49 ms 5424 KB Partially correct
75 Correct 11 ms 5128 KB Output is correct
76 Correct 2 ms 2316 KB Output is correct
77 Correct 48 ms 7904 KB Output is correct
78 Partially correct 45 ms 7612 KB Partially correct
79 Correct 52 ms 7604 KB Output is correct
80 Correct 2 ms 2316 KB Output is correct
81 Partially correct 60 ms 7276 KB Partially correct
82 Partially correct 50 ms 7152 KB Partially correct
83 Partially correct 63 ms 7180 KB Partially correct