답안 #1051080

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1051080 2024-08-09T19:21:46 Z beaconmc Spy 3 (JOI24_spy3) C++17
23 / 100
148 ms 8108 KB
#include "Aoi.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;

namespace {

const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<array<ll,3>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];


}  // namespace


string aoi(int N, int M, int Q, int K, vector<int> A,vector<int> B, vector<long long> C,
                vector<int> T, vector<int> X) {
    string ans;

    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){
        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
 
            if (node[1] == T[i]) break;

            pq.pop();
            node[0] = -node[0];
            if (node[0] != dists[node[1]]) continue;
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }
        unordered_set<ll> stuff;
        ll cur = T[i];

        
        while (prevs[cur][1] != -1){
            stuff.insert(prevs[cur][1]);
            cur = prevs[cur][0];
        }


        FOR(j,0,K){
            if (stuff.count(X[j])) ans += '1';
            else ans += '0';
        }

    }
    return ans;


}
#include "Bitaro.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;
namespace {
const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<array<ll,3>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];
}  // namespace




void bitaro(int N, int M, int Q, int K, vector<int> A, vector<int> B,
            vector<long long> C, vector<int> T, vector<int> X,
            string s) {



    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){

        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;
        unordered_set<ll> idk;
        FOR(j, K*i, K*(i+1)){
            if (s[j] == '1') idk.insert(X[j-K*i]);
        }

        unordered_set<ll> idkman;
        for (auto&i : X) idkman.insert(i);

        FOR(i,0,maxn){
            for (auto&j : edges[i]){
                if (idk.count(j[2])) j[1] = 1;
                else if (idkman.count(j[2])) j[1] = INF;
            }
           

        }


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
            if (node[1] == T[i]) break;
            pq.pop();
            node[0] = -node[0];
             if (node[0] != dists[node[1]]) continue;
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }

        vector<int> stuff;

        ll cur = T[i];
        
        while (prevs[cur][1] != -1){
            stuff.push_back(prevs[cur][1]);
            cur = prevs[cur][0];
        }

        reverse(stuff.begin(), stuff.end());

        answer(stuff);



    }


}
# 결과 실행 시간 메모리 Grader output
1 Partially correct 26 ms 6440 KB Partially correct
2 Correct 2 ms 2324 KB Output is correct
3 Partially correct 57 ms 6164 KB Partially correct
4 Partially correct 56 ms 6328 KB Partially correct
5 Partially correct 65 ms 5900 KB Partially correct
6 Partially correct 66 ms 5976 KB Partially correct
7 Partially correct 57 ms 6004 KB Partially correct
8 Partially correct 61 ms 5816 KB Partially correct
9 Partially correct 53 ms 6268 KB Partially correct
10 Correct 19 ms 5980 KB Output is correct
11 Partially correct 59 ms 5816 KB Partially correct
12 Correct 68 ms 5816 KB Output is correct
13 Partially correct 59 ms 6064 KB Partially correct
14 Partially correct 50 ms 6016 KB Partially correct
15 Correct 60 ms 6164 KB Output is correct
16 Correct 14 ms 5908 KB Output is correct
17 Partially correct 78 ms 6620 KB Partially correct
18 Partially correct 80 ms 6732 KB Partially correct
19 Partially correct 111 ms 7784 KB Partially correct
20 Partially correct 80 ms 7656 KB Partially correct
21 Partially correct 109 ms 7852 KB Partially correct
22 Partially correct 147 ms 7724 KB Partially correct
23 Partially correct 95 ms 7760 KB Partially correct
24 Partially correct 148 ms 7768 KB Partially correct
25 Partially correct 88 ms 6648 KB Partially correct
26 Partially correct 92 ms 6740 KB Partially correct
27 Correct 4 ms 2316 KB Output is correct
28 Partially correct 49 ms 6528 KB Partially correct
29 Partially correct 34 ms 4976 KB Partially correct
30 Correct 52 ms 6328 KB Output is correct
31 Correct 33 ms 6328 KB Output is correct
32 Partially correct 56 ms 6372 KB Partially correct
33 Correct 60 ms 6204 KB Output is correct
34 Partially correct 57 ms 6868 KB Partially correct
35 Correct 43 ms 6832 KB Output is correct
36 Partially correct 56 ms 6708 KB Partially correct
37 Partially correct 16 ms 4364 KB Partially correct
38 Partially correct 37 ms 5272 KB Partially correct
39 Partially correct 37 ms 5044 KB Partially correct
40 Correct 8 ms 4596 KB Output is correct
41 Partially correct 44 ms 7136 KB Partially correct
42 Partially correct 34 ms 7472 KB Partially correct
43 Correct 70 ms 7716 KB Output is correct
44 Correct 16 ms 6936 KB Output is correct
45 Partially correct 22 ms 4332 KB Partially correct
46 Partially correct 30 ms 4848 KB Partially correct
47 Correct 28 ms 4872 KB Output is correct
48 Correct 2 ms 2320 KB Output is correct
49 Correct 3 ms 2316 KB Output is correct
50 Partially correct 15 ms 6408 KB Partially correct
51 Partially correct 5 ms 2832 KB Partially correct
52 Partially correct 4 ms 2324 KB Partially correct
53 Partially correct 27 ms 6428 KB Partially correct
54 Partially correct 16 ms 5056 KB Partially correct
55 Partially correct 39 ms 5904 KB Partially correct
56 Partially correct 33 ms 7044 KB Partially correct
57 Partially correct 59 ms 7496 KB Partially correct
58 Partially correct 53 ms 5896 KB Partially correct
59 Partially correct 84 ms 7488 KB Partially correct
60 Partially correct 62 ms 7120 KB Partially correct
61 Partially correct 65 ms 7360 KB Partially correct
62 Partially correct 64 ms 7056 KB Partially correct
63 Partially correct 79 ms 7468 KB Partially correct
64 Correct 16 ms 6444 KB Output is correct
65 Partially correct 57 ms 6092 KB Partially correct
66 Partially correct 33 ms 8108 KB Partially correct
67 Partially correct 61 ms 6072 KB Partially correct
68 Partially correct 39 ms 8024 KB Partially correct
69 Correct 1 ms 2320 KB Output is correct
70 Correct 2 ms 2316 KB Output is correct
71 Correct 3 ms 2316 KB Output is correct
72 Partially correct 18 ms 4288 KB Partially correct
73 Partially correct 39 ms 4860 KB Partially correct
74 Partially correct 47 ms 4864 KB Partially correct
75 Correct 10 ms 4568 KB Output is correct
76 Correct 2 ms 2312 KB Output is correct
77 Correct 44 ms 6404 KB Output is correct
78 Partially correct 38 ms 6552 KB Partially correct
79 Correct 48 ms 6648 KB Output is correct
80 Correct 2 ms 2324 KB Output is correct
81 Partially correct 53 ms 6000 KB Partially correct
82 Partially correct 48 ms 5992 KB Partially correct
83 Partially correct 62 ms 6072 KB Partially correct