Submission #1051071

# Submission time Handle Problem Language Result Execution time Memory
1051071 2024-08-09T19:14:30 Z beaconmc Spy 3 (JOI24_spy3) C++17
0 / 100
1000 ms 10264 KB
#include "Aoi.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;

namespace {

const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<vector<ll>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];


}  // namespace


string aoi(int N, int M, int Q, int K, vector<int> A,vector<int> B, vector<long long> C,
                vector<int> T, vector<int> X) {
    string ans;

    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){
        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
 
            if (node[1] == T[i]) break;
            pq.pop();
            node[0] = -node[0];
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }
        set<ll> stuff;
        ll cur = T[i];

        
        while (prevs[cur][1] != -1){
            stuff.insert(prevs[cur][1]);
            cur = prevs[cur][0];
        }


        FOR(j,0,K){
            if (stuff.count(X[j])) ans += '1';
            else ans += '0';
        }

    }
    return ans;


}
#include "Bitaro.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;
namespace {
const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<vector<ll>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];
}  // namespace




void bitaro(int N, int M, int Q, int K, vector<int> A, vector<int> B,
            vector<long long> C, vector<int> T, vector<int> X,
            string s) {



    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){

        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;
        set<ll> idk;
        FOR(j, K*i, K*(i+1)){
            if (s[j] == '1') idk.insert(X[j-K*i]);
        }

        set<ll> idkman;
        for (auto&i : X) idkman.insert(i);

        FOR(i,0,maxn){
            for (auto&j : edges[i]){
                if (idk.count(j[2])) j[1] = 1;
                else if (idkman.count(j[2])) j[1] = INF;
            }
           

        }


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
            if (node[1] == T[i]) break;
            pq.pop();
            node[0] = -node[0];
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }

        vector<int> stuff;

        ll cur = T[i];
        
        while (prevs[cur][1] != -1){
            stuff.push_back(prevs[cur][1]);
            cur = prevs[cur][0];
        }

        reverse(stuff.begin(), stuff.end());

        answer(stuff);



    }


}
# Verdict Execution time Memory Grader output
1 Partially correct 33 ms 8992 KB Partially correct
2 Correct 2 ms 2316 KB Output is correct
3 Partially correct 87 ms 8496 KB Partially correct
4 Partially correct 71 ms 8116 KB Partially correct
5 Partially correct 103 ms 8376 KB Partially correct
6 Partially correct 82 ms 8460 KB Partially correct
7 Partially correct 88 ms 8376 KB Partially correct
8 Partially correct 78 ms 8376 KB Partially correct
9 Partially correct 66 ms 8016 KB Partially correct
10 Correct 27 ms 7848 KB Output is correct
11 Partially correct 80 ms 8376 KB Partially correct
12 Correct 92 ms 8340 KB Output is correct
13 Partially correct 73 ms 8372 KB Partially correct
14 Partially correct 65 ms 8480 KB Partially correct
15 Correct 81 ms 8108 KB Output is correct
16 Correct 22 ms 7860 KB Output is correct
17 Partially correct 101 ms 8468 KB Partially correct
18 Partially correct 106 ms 8472 KB Partially correct
19 Partially correct 180 ms 10264 KB Partially correct
20 Partially correct 124 ms 10192 KB Partially correct
21 Partially correct 136 ms 10240 KB Partially correct
22 Execution timed out 1063 ms 5084 KB Time limit exceeded
23 Halted 0 ms 0 KB -