Submission #1050329

# Submission time Handle Problem Language Result Execution time Memory
1050329 2024-08-09T08:46:51 Z ksun69(#11101) Hamburg Steak (JOI20_hamburg) C++17
15 / 100
668 ms 82860 KB
#include <bits/stdc++.h>
using namespace std;

namespace std {

template<class Fun>
class y_combinator_result {
	Fun fun_;
public:
	template<class T>
	explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}

	template<class ...Args>
	decltype(auto) operator()(Args &&...args) {
		return fun_(std::ref(*this), std::forward<Args>(args)...);
	}
};

template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
	return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

} // namespace std

int main(){
	ios_base::sync_with_stdio(false), cin.tie(nullptr);
	int N, K;
	cin >> N >> K;
	vector<vector<int> > S(N, vector<int>(4));
	for(int i = 0; i < N; i++){
		for(int j = 0; j < 4; j++){
			cin >> S[i][j];
		}
	}
	vector<int> x_values, y_values;
	for(int i = 0; i < N; i++){
		x_values.push_back(S[i][0]);
		x_values.push_back(S[i][2]);
		y_values.push_back(S[i][1]);
		y_values.push_back(S[i][3]);
	}
	sort(x_values.begin(), x_values.end());
	sort(y_values.begin(), y_values.end());
	x_values.erase(unique(x_values.begin(), x_values.end()), x_values.end());
	y_values.erase(unique(y_values.begin(), y_values.end()), y_values.end());

	auto get_compress_x = [&](int x){
		return int(lower_bound(x_values.begin(), x_values.end(), x) - x_values.begin());
	};
	auto get_compress_y = [&](int y){
		return int(lower_bound(y_values.begin(), y_values.end(), y) - y_values.begin());
	};

	for(int i = 0; i < N; i++){
		S[i][0] = get_compress_x(S[i][0]);
		S[i][1] = get_compress_y(S[i][1]);
		S[i][2] = get_compress_x(S[i][2]);
		S[i][3] = get_compress_y(S[i][3]);
	}

	// L D R U
	vector<pair<int,int> > bad = {{-1, -1}};
	auto sol = y_combinator([&](auto self, vector<vector<int>> s, int k) -> vector<pair<int,int> > {
		if(s.size() == 0) return vector<pair<int,int> >(k, {0, 0});
		if(k == 0) return bad;
		vector<int> bounds {int(-1e9), int(-1e9), int(1e9), int(1e9)};
		for(int i = 0; i < (int)s.size(); i++){
			bounds[0] = max(bounds[0], s[i][0]);
			bounds[1] = max(bounds[1], s[i][1]);
			bounds[2] = min(bounds[2], s[i][2]);
			bounds[3] = min(bounds[3], s[i][3]);
		}
		for(int x : {bounds[0], bounds[2]}){
			for(int y : {bounds[1], bounds[3]}){
				vector<vector<int> > nxt;
				for(int i = 0; i < (int)s.size(); i++){
					if(!(s[i][0] <= x && s[i][2] >= x && s[i][1] <= y && s[i][3] >= y)) nxt.push_back(s[i]);
				}
				auto res = self(nxt, k-1);
				if(res != bad) {
					res.push_back({x, y});
					return res;
				}
			}
		}
		return bad;
	})(S, K);
	if(sol != bad){
		for(int i = 0; i < K; i++){
			cout << x_values[sol[i].first] << ' ' << y_values[sol[i].second] << '\n';
		}
		exit(0);
	}
	assert(K == 4);

	vector<int> bounds {int(-1e9), int(-1e9), int(1e9), int(1e9)};
	for(int i = 0; i < N; i++){
		bounds[0] = max(bounds[0], S[i][0]);
		bounds[1] = max(bounds[1], S[i][1]);
		bounds[2] = min(bounds[2], S[i][2]);
		bounds[3] = min(bounds[3], S[i][3]);
	}
	swap(bounds[0], bounds[2]);
	swap(bounds[1], bounds[3]);
	int lx = bounds[0];
	int rx = bounds[2];
	int ly = bounds[1];
	int ry = bounds[3];
	assert(lx < rx && ly < ry);
	for(int i = 0; i < N; i++){
		S[i][0] = max(S[i][0], lx);
		S[i][1] = max(S[i][1], ly);
		S[i][2] = min(S[i][2], rx);
		S[i][3] = min(S[i][3], ry);
	}
	vector<vector<vector<int> > > constraints(16);
	for(int i = 0; i < N; i++){
		int mask = 0;
		for(int j = 0; j < 4; j++){
			if(S[i][j] == bounds[j]) mask |= (1 << j);
		}
		constraints[mask].push_back(S[i]);
	}
	assert(constraints[0].size() == 0);
	vector<pair<int,int> > sides(4);
	for(int b = 0; b < 4; b++){
		assert(!constraints[1 << b].empty());
		pair<int,int> lr = {int(-1e9), int(1e9)};
		for(auto v : constraints[1 << b]){
			lr.first = max(lr.first, v[(b & 1) ^ 1]);
			lr.second = min(lr.second, v[(b & 1) ^ 3]);
		}
		sides[b] = lr;
	}

	auto remove_contained_rectangles = [&](vector<vector<int> > &rectangles){
		sort(rectangles.begin(), rectangles.end(), [&](vector<int> a, vector<int> b){
			return pair<int,int>(a[2] - a[0], a[3] - a[1]) < pair<int,int>(b[2] - b[0], b[3] - b[1]);
		});
		vector<vector<int> > stk;
		for(auto v : rectangles){
			while(!stk.empty() && stk.back()[0] >= v[0] && stk.back()[1] >= v[1] && stk.back()[2] <= v[2] && stk.back()[3] <= v[3]){
				stk.pop_back();
			}
			stk.push_back(v);
		}
		rectangles = stk;
	};
	for(int msk = 0; msk < (1 << 4); msk++){
		remove_contained_rectangles(constraints[msk]);
	}
	vector<pair<int,int> > x_constraints, y_constraints;
	for(vector<int> c : constraints[(1 << 1) ^ (1 << 3)]){
		x_constraints.push_back({c[0], c[2]});
	}
	for(vector<int> c : constraints[(1 << 2) ^ (1 << 0)]){
		y_constraints.push_back({c[1], c[3]});
	}

	auto generate_map = [&](vector<pair<int,int> > constraints, int L, pair<int,int> l_bounds, pair<int,int> bounds) -> vector<pair<int,int> > {
		vector<vector<pair<int,int> > > ins(L);
		vector<vector<pair<int,int> > > rem(L);
		multiset<int> lb;
		multiset<int> ub;
		ub.insert(bounds.second);
		lb.insert(bounds.first);
		for(auto [l, r] : constraints){
			rem[l].push_back({l, r});
			ins[r].push_back({l, r});
			lb.insert(l);
			ub.insert(r);
		}
		vector<pair<int,int> > res(L);
		for(int i = 0; i < L; i++){
			for(auto [l, r] : rem[i]){
				ub.erase(ub.find(r));
				lb.erase(lb.find(l));
			}
			{
				int l = *lb.rbegin();
				int r = *ub.begin();
				if(l <= r && i >= l_bounds.first && i <= l_bounds.second){
					res[i] = {l, r};
				} else {
					res[i] = {-1, -1};
				}
			}
			for(auto [l, r] : ins[i]){
				ub.insert(r);
				lb.insert(l);
			}
		}
		return res;
	};

	int X = x_values.size();
	int Y = y_values.size();
	vector<pair<int,int> > x_map = generate_map(x_constraints, X, sides[1], sides[3]);
	vector<pair<int,int> > y_map = generate_map(y_constraints, Y, sides[0], sides[2]);
	int max_y_min = -1;
	for(int i = 0; i < Y; i++){
		if(y_map[i].first != -1){
			max_y_min = max(max_y_min, min(i, y_map[i].first));
		}
	}
	vector<int> y0_x3_max(Y);
	int c3 = 0;
	for(int y = 0; y < Y; y++){
		while(c3 < constraints[(1 << 0) ^ (1 << 3)].size() && constraints[(1 << 0) ^ (1 << 3)][c3][1] <= y){
			c3++;
		}
		y0_x3_max[y] = (c3 == constraints[(1 << 0) ^ (1 << 3)].size() ? bounds[2] : constraints[(1 << 0) ^ (1 << 3)][c3][2]);
	}
	vector<int> y2_x3_min(Y);
	c3 = 0;
	for(int y = 0; y < Y; y++){
		while(c3 < constraints[(1 << 2) ^ (1 << 3)].size() && constraints[(1 << 2) ^ (1 << 3)][c3][1] <= y){
			c3++;
		}
		y2_x3_min[y] = (c3 == constraints[(1 << 2) ^ (1 << 3)].size() ? bounds[0] : constraints[(1 << 2) ^ (1 << 3)][c3][0]);
	}

	int c0 = 0;
	int c2 = (int)constraints[(1 << 2) ^ (1 << 1)].size();
	vector<pair<int,int> > ans;
	for(int x = 0; x < X; x++){
		while(c0 < constraints[(1 << 0) ^ (1 << 1)].size() && constraints[(1 << 0) ^ (1 << 1)][c0][2] < x){
			c0++;
		}
		int y0max = (c0 == 0 ? bounds[3] : constraints[(1 << 0) ^ (1 << 1)][c0-1][3]);
		while(c2 > 0 && constraints[(1 << 2) ^ (1 << 1)][c2-1][0] <= x){
			c2--;
		}
		int y2max = (c2 == 0 ? bounds[3] : constraints[(1 << 2) ^ (1 << 1)][c2-1][3]);
		vector<pair<int,int> > y_pairs;
		{
			int y0 = min(y0max, max_y_min);
			int y2 = min(y2max, y_map[y0].second);
			if(y_map[y0].first != -1 && y2 >= y0) y_pairs.push_back({y0, y2});
		}
		{
			int y2 = min(y2max, max_y_min);
			int y0 = min(y0max, y_map[y2].second);
			if(y_map[y2].first != -1 && y0 >= y2) y_pairs.push_back({y0, y2});
		}
		for(auto [y0, y2] : y_pairs){
			int xl = x_map[x].first;
			int xr = x_map[x].second;
			if(xl < 0) continue;
			xl = max(xl, y2_x3_min[y2]);
			xr = min(xr, y0_x3_max[y0]);
			if(xl <= xr){
				ans = {{x, bounds[1]}, {xl, bounds[3]}, {bounds[0], y0}, {bounds[2], y2}};
			}
		}
	}
	if(ans.empty()){
		assert(false);
	}
	for(int m1 = 0; m1 < (1 << 4); m1++){
		for(auto cons : constraints[m1]){
			bool found = false;
			for(auto [x, y] : ans){
				if(cons[0] <= x && x <= cons[2] && cons[1] <= y && y <= cons[3]){
					found = true;
				}
			}
			if(m1 == 3 && !found) assert(false);
		}
	}
	for(auto [x, y] : ans){
		cout << x_values[x] << ' ' << y_values[y] << '\n';
	}
}

Compilation message

hamburg.cpp: In function 'int main()':
hamburg.cpp:210:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  210 |   while(c3 < constraints[(1 << 0) ^ (1 << 3)].size() && constraints[(1 << 0) ^ (1 << 3)][c3][1] <= y){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:213:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  213 |   y0_x3_max[y] = (c3 == constraints[(1 << 0) ^ (1 << 3)].size() ? bounds[2] : constraints[(1 << 0) ^ (1 << 3)][c3][2]);
      |                   ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:218:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  218 |   while(c3 < constraints[(1 << 2) ^ (1 << 3)].size() && constraints[(1 << 2) ^ (1 << 3)][c3][1] <= y){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:221:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  221 |   y2_x3_min[y] = (c3 == constraints[(1 << 2) ^ (1 << 3)].size() ? bounds[0] : constraints[(1 << 2) ^ (1 << 3)][c3][0]);
      |                   ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:228:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  228 |   while(c0 < constraints[(1 << 0) ^ (1 << 1)].size() && constraints[(1 << 0) ^ (1 << 1)][c0][2] < x){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 600 KB Output is correct
5 Correct 2 ms 600 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 5 ms 1116 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 4 ms 1116 KB Output is correct
11 Correct 3 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 3 ms 860 KB Output is correct
8 Correct 23 ms 1436 KB Output is correct
9 Correct 3 ms 860 KB Output is correct
10 Correct 9 ms 1324 KB Output is correct
11 Correct 16 ms 1372 KB Output is correct
12 Correct 4 ms 1368 KB Output is correct
13 Correct 2 ms 860 KB Output is correct
14 Incorrect 22 ms 1328 KB Output isn't correct
15 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 193 ms 25448 KB Output is correct
6 Correct 200 ms 25448 KB Output is correct
7 Correct 192 ms 25244 KB Output is correct
8 Correct 200 ms 25260 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 242 ms 36256 KB Output is correct
6 Correct 235 ms 50084 KB Output is correct
7 Correct 203 ms 34908 KB Output is correct
8 Correct 285 ms 60064 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 600 KB Output is correct
5 Correct 2 ms 600 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 5 ms 1116 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 4 ms 1116 KB Output is correct
11 Correct 3 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 228 ms 42144 KB Output is correct
14 Correct 211 ms 41636 KB Output is correct
15 Correct 242 ms 44200 KB Output is correct
16 Correct 202 ms 36788 KB Output is correct
17 Correct 241 ms 39600 KB Output is correct
18 Correct 209 ms 33384 KB Output is correct
19 Correct 214 ms 41568 KB Output is correct
20 Correct 668 ms 82860 KB Output is correct
21 Correct 225 ms 51296 KB Output is correct
22 Correct 347 ms 82588 KB Output is correct
23 Correct 452 ms 80452 KB Output is correct
24 Correct 361 ms 76748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 3 ms 860 KB Output is correct
8 Correct 23 ms 1436 KB Output is correct
9 Correct 3 ms 860 KB Output is correct
10 Correct 9 ms 1324 KB Output is correct
11 Correct 16 ms 1372 KB Output is correct
12 Correct 4 ms 1368 KB Output is correct
13 Correct 2 ms 860 KB Output is correct
14 Incorrect 22 ms 1328 KB Output isn't correct
15 Halted 0 ms 0 KB -