이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
// -------------------- Includes -------------------- //
#define _CRT_SECURE_NO_WARNINGS
#define _USE_MATH_DEFINES
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <stdio.h>
#include <cstdlib>
#include <stdlib.h>
#include <array>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <vector>
#include <stack>
#include <queue>
#include <deque>
#include <bitset>
#include <list>
#include <iterator>
#include <numeric>
#include <complex>
#include <tuple>
#include <utility>
#include <cassert>
#include <assert.h>
#include <climits>
#include <limits.h>
#include <ctime>
#include <time.h>
#include <random>
#include <chrono>
#include <fstream>
using namespace std;
// -------------------- Typedefs -------------------- //
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ld;
// -------------------- Defines -------------------- //
#define pr pair
#define mpr make_pair
#define ff first
#define ss second
#define mset multiset
#define mmap multimap
#define uset unordered_set
#define umap unordered_map
#define umset unordered_multiset
#define ummap unordered_multimap
#define pqueue priority_queue
#define sz(x) (int((x).size()))
#define len(x) (int((x).length()))
#define all(x) (x).begin(), (x).end()
#define clr(x) (x).clear()
#define ft front
#define bk back
#define pf push_front
#define pb push_back
#define popf pop_front
#define popb pop_back
#define lb lower_bound
#define ub upper_bound
#define bs binary_search
// -------------------- Constants -------------------- //
const int MAX = int(1e9 + 5);
const ll MAXL = ll(1e18 + 5);
const ll MOD = ll(1e9 + 7);
const ll MOD2 = ll(998244353);
// -------------------- Functions -------------------- //
void fastio()
{
	ios_base::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	return;
}
void precision(int x)
{
	cout << fixed << setprecision(x);
	return;
}
ll gcd0(ll a, ll b)
{
	while (b) {
		a %= b;
		swap(a, b);
	}
	return a;
}
ll lcm0(ll a, ll b)
{
	return a / gcd0(a, b) * b;
}
bool is_prime(ll a)
{
	if (a == 1) return false;
	for (ll i = 2; i * i <= a; i++) if (a % i == 0) return false;
	return true;
}
bool is_square(ll a)
{
	ll b = ll(sqrtl(ld(a)));
	return (b * b == a);
}
bool is_cube(ll a)
{
	ll b = ll(cbrtl(ld(a)));
	return (b * b * b == a);
}
int digit_sum(ll a)
{
	int sum = 0;
	while (a) {
		sum += int(a % 10);
		a /= 10;
	}
	return sum;
}
ll binpow(ll a, int b)
{
	ll ans = 1;
	while (b) {
		if (b & 1) ans *= a;
		b >>= 1;
		a *= a;
	}
	return ans;
}
ll binpow_mod(ll a, ll b, ll mod)
{
	ll ans = 1;
	while (b) {
		if (b & 1) ans = (ans * a) % mod;
		b >>= 1;
		a = (a * a) % mod;
	}
	return ans;
}
ll factorial(int a)
{
	ll ans = 1;
	for (int i = 2; i <= a; i++) ans *= ll(i);
	return ans;
}
ll factorial_mod(int a, ll mod)
{
	ll ans = 1;
	for (int i = 2; i <= a; i++) ans = (ans * ll(i)) % mod;
	return ans;
}
// -------------------- Solution -------------------- //
const int N = 1'000'006;
ll a[N];
int ul[N], ur[N];
vector<pr<int, ll>> g[N * 2];
int n;
ll dist[N * 2];
set<pr<ll, int>> st;
void dijkstra()
{
	int i, j;
	int u, v; ll w;
	fill(dist, dist + n * 2 + 3, MAXL);
	dist[0] = 0;
	st.insert(mpr(0, 0));
	while (!st.empty()) {
		u = (*st.begin()).ss;
		st.erase(st.begin());
		for (i = 0; i < sz(g[u]); i++) {
			v = g[u][i].ff;
			w = g[u][i].ss;
			if (dist[v] > dist[u] + w) {
				st.erase(mpr(dist[v], v));
				dist[v] = dist[u] + w;
				st.insert(mpr(dist[v], v));
			}
		}
	}
	return;
}
void solve()
{
	int i, j;
	int x, z;
	ll y, t;
	cin >> n;
	cin >> x >> y >> z >> t;
	for (i = 1; i <= n; i++) {
		cin >> a[i];
		a[i]++;
	}
	stack<pr<int, int>> s;
	for (i = 1; i <= n; i++) {
		while (!s.empty() && s.top().ff > a[i]) s.pop();
		if (!s.empty()) ul[i] = s.top().ss;
		s.push(mpr(a[i], i));
	}
	while (!s.empty()) s.pop();
	for (i = n; i >= 1; i--) {
		while (!s.empty() && s.top().ff > a[i]) s.pop();
		if (!s.empty()) ur[i] = s.top().ss;
		else ur[i] = n + 1;
		s.push(mpr(a[i], i));
	}
	// same line
	for (i = 1; i <= n; i++) {
		g[i * 2 - 1].pb(mpr(i * 2, a[i] - 1));
		g[i * 2].pb(mpr(i * 2 - 1, a[i] - 1));
	}
	// adjacent line
	for (i = 1; i < n; i++) {
		g[i * 2 - 1].pb(mpr(i * 2 + 1, 1));
		g[i * 2 + 1].pb(mpr(i * 2 - 1, 1));
		g[i * 2].pb(mpr(i * 2 + 1, 1));
		g[i * 2 + 1].pb(mpr(i * 2, 1));
	}
	// closest smaller
	for (i = 1; i <= n; i++) {
		if (ul[i]) {
			g[i * 2].pb(mpr(ul[i] * 2, i - ul[i]));
			g[ul[i] * 2].pb(mpr(i * 2, i - ul[i] + a[i] - a[ul[i]]));
		}
		if (ur[i] <= n) {
			g[i * 2].pb(mpr(ur[i] * 2, ur[i] - i));
			g[ur[i] * 2].pb(mpr(i * 2, ur[i] - i + a[i] - a[ur[i]]));
		}
	}
	// same line for start and end
	g[0].pb(mpr(x * 2 - 1, y - 1));
	g[x * 2 - 1].pb(mpr(0, y - 1));
	g[0].pb(mpr(x * 2, a[x] - y));
	g[x * 2].pb(mpr(0, a[x] - y));
	g[n * 2 + 1].pb(mpr(z * 2 - 1, t - 1));
	g[z * 2 - 1].pb(mpr(n * 2 + 1, t - 1));
	g[n * 2 + 1].pb(mpr(z * 2, a[z] - t));
	g[z * 2].pb(mpr(n * 2 + 1, a[z] - t));
	// closest smaller for start
	for (i = x - 1; i >= 1; i--) {
		if (a[i] <= y) {
			g[0].pb(mpr(i * 2, x - i));
			g[i * 2].pb(mpr(0, x - i + y - a[i]));
			break;
		}
		g[0].pb(mpr(i * 2, x - i + a[i] - y));
		g[i * 2].pb(mpr(0, x - i + a[i] - y));
	}
	for (i = x + 1; i <= n; i++) {
		if (a[i] <= y) {
			g[0].pb(mpr(i * 2, i - x));
			g[i * 2].pb(mpr(0, i - x + y - a[i]));
			break;
		}
		g[0].pb(mpr(i * 2, i - x + a[i] - y));
		g[i * 2].pb(mpr(0, i - x + a[i] - y));
	}
	// closest smaller for end
	for (i = z - 1; i >= 1; i--) {
		if (a[i] <= t) {
			g[n * 2 + 1].pb(mpr(i * 2, z - i));
			g[i * 2].pb(mpr(n * 2 + 1, z - i + t - a[i]));
			break;
		}
		g[n * 2 + 1].pb(mpr(i * 2, z - i + a[i] - t));
		g[i * 2].pb(mpr(n * 2 + 1, z - i + a[i] - t));
	}
	for (i = z + 1; i <= n; i++) {
		if (a[i] <= t) {
			g[n * 2 + 1].pb(mpr(i * 2, i - z));
			g[i * 2].pb(mpr(n * 2 + 1, i - z + t - a[i]));
			break;
		}
		g[n * 2 + 1].pb(mpr(i * 2, i - z + a[i] - t));
		g[i * 2].pb(mpr(n * 2 + 1, i - z + a[i] - t));
	}
	dijkstra();
	ll mn = min(y, t);
	for (i = min(x, z) + 1; i < max(x, z); i++) mn = min(mn, a[i]);
	cout << min(dist[n * 2 + 1], (y - mn) + (t - mn) + llabs(x - z)) << "\n";
	return;
}
void precalc()
{
	return;
}
int main()
{
	fastio();
	precalc();
	int tests = 1, tc;
	//cin >> tests;
	for (tc = 1; tc <= tests; tc++) {
		solve();
	}
	return 0;
}
/*
	# # # #   # # # #   # # # #   #       #    #       #     #
	   #      #         #     #    #     #    # #      #   #
	   #      # # # #   #     #     #   #    #   #     # #
	   #            #   #     #      # #    # # # #    #   #
	   #      # # # #   # # # #       #    #       #   #     #
*/
컴파일 시 표준 에러 (stderr) 메시지
Main.cpp: In function 'void dijkstra()':
Main.cpp:196:9: warning: unused variable 'j' [-Wunused-variable]
  196 |  int i, j;
      |         ^
Main.cpp: In function 'void solve()':
Main.cpp:225:9: warning: unused variable 'j' [-Wunused-variable]
  225 |  int i, j;
      |         ^| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... |