import os
import sys
from collections import *
from heapq import *
from math import gcd, floor, ceil, sqrt
from copy import deepcopy
from itertools import permutations, combinations, product
from bisect import bisect_left, bisect_right
from functools import lru_cache, reduce
import operator
from random import getrandbits
# Para mejorar el rendimiento de la entrada/salida
input = lambda: sys.stdin.readline().strip()
flush = lambda: sys.stdout.flush()
print = lambda *args, **kwargs: sys.stdout.write(' '.join(map(str, args)) + kwargs.get("end", "\n")) and flush()
# Optimización de la recursión para Python
sys.setrecursionlimit(100000)
# Funciones para lectura de múltiples tipos de datos
def ints(): return map(int, input().split())
def strs(): return input().split()
def chars(): return list(input().strip())
def mat(n): return [list(ints()) for _ in range(n)] # Matriz de n x m donde m es el número de enteros en una línea
# Constantes útiles
INF = float('inf')
MOD = 1000000007 # Modulo por defecto, cambiar si se necesita otro
abcd = "abcdefghijklmnopqrstuvwxyz"
# Algunas funciones útiles
def add(x, y, mod=MOD): return (x + y) % mod
def sub(x, y, mod=MOD): return (x - y) % mod
def mul(x, y, mod=MOD): return (x * y) % mod
# Inverso multiplicativo de a modulo m (cuando m es primo)
def invmod(a, mod=MOD): return powmod(a, mod - 2, mod)
def lcm(a, b): return a * b // gcd(a, b)
RANDOM = getrandbits(32)
class Wrapper(int):
def __init__(self, x):
int.__init__(x)
def __hash__(self):
return super(Wrapper, self).__hash__() ^ RANDOM
depth = []
parent = []
visited = []
AL = []
uf = None
class UF:
def __init__(self, n):
self.parents = list(range(n))
self.ranks = [0] * n
self.sizes = [1] * n
self.numdisjoint = n
def find(self, x):
xp = x
children = []
while xp != self.parents[xp]:
children.append(xp)
xp = self.parents[xp]
for c in children:
self.parents[c] = xp
return xp
def union(self, a, b):
ap = self.find(a)
bp = self.find(b)
if ap == bp:
return
if self.ranks[ap] < self.ranks[bp]:
self.parents[ap] = bp
self.sizes[bp] += self.sizes[ap]
elif self.ranks[bp] < self.ranks[ap]:
self.parents[bp] = ap
self.sizes[ap] += self.sizes[bp]
else:
self.parents[bp] = ap
self.ranks[ap] += 1
self.sizes[ap] += self.sizes[bp]
self.numdisjoint -= 1
def size(self, x):
return self.sizes[self.find(x)]
# Tree compression from vertex a to b
def path_compression(a, b):
a = uf.find(a)
b = uf.find(b)
while depth[a] < depth[b]:
uf.union(a, b)
b = parent[b]
path_compression(a, b)
def dfs(u, lvl, p):
global AL, visited, parent, depth, uf
visited[u] = True
depth[u] = lvl
parent[u] = p
for v in AL[u]:
if not visited[v]:
dfs(v, lvl+1, u)
def main():
global AL, visited, parent, depth, uf
n, m = ints()
AL = [[] for i in range(n+1)]
for i in range(n-1):
u,v = ints()
AL[u].append(v)
AL[v].append(u)
tree_groups = [[] for i in range(n+1)]
for i in range(n):
g = int(input())
tree_groups[g].append(i+1)
#print(tree_groups)
visited = [False] * (n+1)
parent = [0] * (n+1)
depth = [0] * (n + 1)
dfs(1, 0, 1)
#print(depth, parent)
uf = UF(n+1)
for group in tree_groups:
for i in range(1, len(group)):
path_compression(group[0], group[i])
ans = 0
for u in range(1, n+1):
if uf.size(u) == 1:
ans +=1
print((ans + 1) // 2)
if __name__ == "__main__":
main()
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
70 ms |
27844 KB |
Output is correct |
2 |
Incorrect |
67 ms |
24188 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
70 ms |
27844 KB |
Output is correct |
2 |
Incorrect |
67 ms |
24188 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
70 ms |
27844 KB |
Output is correct |
2 |
Incorrect |
67 ms |
24188 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
204 ms |
53520 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
70 ms |
27844 KB |
Output is correct |
2 |
Incorrect |
67 ms |
24188 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |