Submission #1048081

#TimeUsernameProblemLanguageResultExecution timeMemory
1048081RauProMergers (JOI19_mergers)Pypy 3
0 / 100
204 ms53520 KiB
import os import sys from collections import * from heapq import * from math import gcd, floor, ceil, sqrt from copy import deepcopy from itertools import permutations, combinations, product from bisect import bisect_left, bisect_right from functools import lru_cache, reduce import operator from random import getrandbits # Para mejorar el rendimiento de la entrada/salida input = lambda: sys.stdin.readline().strip() flush = lambda: sys.stdout.flush() print = lambda *args, **kwargs: sys.stdout.write(' '.join(map(str, args)) + kwargs.get("end", "\n")) and flush() # Optimización de la recursión para Python sys.setrecursionlimit(100000) # Funciones para lectura de múltiples tipos de datos def ints(): return map(int, input().split()) def strs(): return input().split() def chars(): return list(input().strip()) def mat(n): return [list(ints()) for _ in range(n)] # Matriz de n x m donde m es el número de enteros en una línea # Constantes útiles INF = float('inf') MOD = 1000000007 # Modulo por defecto, cambiar si se necesita otro abcd = "abcdefghijklmnopqrstuvwxyz" # Algunas funciones útiles def add(x, y, mod=MOD): return (x + y) % mod def sub(x, y, mod=MOD): return (x - y) % mod def mul(x, y, mod=MOD): return (x * y) % mod # Inverso multiplicativo de a modulo m (cuando m es primo) def invmod(a, mod=MOD): return powmod(a, mod - 2, mod) def lcm(a, b): return a * b // gcd(a, b) RANDOM = getrandbits(32) class Wrapper(int): def __init__(self, x): int.__init__(x) def __hash__(self): return super(Wrapper, self).__hash__() ^ RANDOM depth = [] parent = [] visited = [] AL = [] uf = None class UF: def __init__(self, n): self.parents = list(range(n)) self.ranks = [0] * n self.sizes = [1] * n self.numdisjoint = n def find(self, x): xp = x children = [] while xp != self.parents[xp]: children.append(xp) xp = self.parents[xp] for c in children: self.parents[c] = xp return xp def union(self, a, b): ap = self.find(a) bp = self.find(b) if ap == bp: return if self.ranks[ap] < self.ranks[bp]: self.parents[ap] = bp self.sizes[bp] += self.sizes[ap] elif self.ranks[bp] < self.ranks[ap]: self.parents[bp] = ap self.sizes[ap] += self.sizes[bp] else: self.parents[bp] = ap self.ranks[ap] += 1 self.sizes[ap] += self.sizes[bp] self.numdisjoint -= 1 def size(self, x): return self.sizes[self.find(x)] # Tree compression from vertex a to b def path_compression(a, b): a = uf.find(a) b = uf.find(b) while depth[a] < depth[b]: uf.union(a, b) b = parent[b] path_compression(a, b) def dfs(u, lvl, p): global AL, visited, parent, depth, uf visited[u] = True depth[u] = lvl parent[u] = p for v in AL[u]: if not visited[v]: dfs(v, lvl+1, u) def main(): global AL, visited, parent, depth, uf n, m = ints() AL = [[] for i in range(n+1)] for i in range(n-1): u,v = ints() AL[u].append(v) AL[v].append(u) tree_groups = [[] for i in range(n+1)] for i in range(n): g = int(input()) tree_groups[g].append(i+1) #print(tree_groups) visited = [False] * (n+1) parent = [0] * (n+1) depth = [0] * (n + 1) dfs(1, 0, 1) #print(depth, parent) uf = UF(n+1) for group in tree_groups: for i in range(1, len(group)): path_compression(group[0], group[i]) ans = 0 for u in range(1, n+1): if uf.size(u) == 1: ans +=1 print((ans + 1) // 2) if __name__ == "__main__": main()
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...