Submission #1042211

# Submission time Handle Problem Language Result Execution time Memory
1042211 2024-08-02T16:08:12 Z vjudge1 Tropical Garden (IOI11_garden) C++17
100 / 100
1345 ms 34384 KB
#include "garden.h"
#include "gardenlib.h"
#include <bits/stdc++.h>
using namespace std;


void count_routes(int N, int M, int P, int R[][2], int Q, int G[]) {
  vector<vector<int>> adj(N);
  for (int i = 0; i < M; ++i) {
    adj[R[i][0]].push_back(R[i][1]);
    adj[R[i][1]].push_back(R[i][0]);
  }

  auto node = [&](int u, int v) {
    if (adj[v][0] == u)
      return N+v;
    else
      return v;
  };

  const int J = 29;
  vector<int> succ(2*N, -1), indeg(2*N, 0);
  vector<vector<int>> rev(2*N);

  auto set_succ = [&](int u, int v) {
    succ[u] = v;
    rev[v].push_back(u);
    ++indeg[v];
  };

  for (int i = 0; i < N; ++i) {
    set_succ(node(-1, i), node(i, adj[i][0]));
    for (int v : adj[i]) {
      if (v != adj[i][0] or adj[i].size() == 1)
        set_succ(node(v, i), node(i, adj[i][0]));
      else
        set_succ(node(v, i), node(i, adj[i][1]));
    }
  }

  vector<int> lambda(2*N, -1), mu(2*N, -1);

  auto floyd_cycle = [&](int u) {
    // buscamos dos elementos en un ciclo
    int a = succ[u];
    int b = succ[succ[u]];
    int i = 1;
    while (a != b) {
      if (mu[a] != -1) break;
      ++i;
      a = succ[a];
      b = succ[succ[b]];
    }

    if (mu[a] != -1) { // a partir de <a> ya se ha calculado
      lambda[u] = lambda[a];
      mu[u] = i;

      // pasamos por los elementos de la cola hasta <a> para guardar la informacion
      b = succ[u];
      for (int j = 1; j < mu[u]; ++j) {
        mu[b] = mu[u] - j;
        lambda[b] = lambda[u];
        b = succ[b];
      }
    }
    else {
      // ahora iteramos el ciclo para calcular su longitud
      b = succ[a];
      lambda[u] = 1; // longitud ciclo
      while (a != b) {
        ++lambda[u];
        b = succ[b];
      }
      // lambda[u] calculada

      // pasamos por todos los elementos del ciclo para guardar la informacion
      for (int i = 0; i < lambda[u]; ++i) {
        mu[a] = 0;
        lambda[a] = lambda[u];
        a = succ[a];
      }

      // reiniciamos punteros y ahora calculamos longitud de la cola e inicio del ciclo
      a = u;
      b = u;
      for (int i = 0; i < lambda[u]; ++i) {
        b = succ[b];
      }
      mu[u] = 0; // longitud cola 
      while (a != b) {
        ++mu[u];
        a = succ[a];
        b = succ[b];
      }
      // mu[u] calculada
    }
  };

  // empezamos a hacer floyd por las hojas, para procesar colas eficientemente
  for (int u = 0; u < 2*N; ++u) {
    if (indeg[u] == 0) floyd_cycle(u);
  }

  // los que queden son ciclos puros
  for (int u = 0; u < 2*N; ++u) {
    if (mu[u] == -1) floyd_cycle(u);
  }

  auto get_rev_dists = [&](int u) {
    vector<int> dist(2*N, -1);
    queue<int> q;
    dist[u] = 0;
    q.push(u);
    while (not q.empty()) {
      int i = q.front(); q.pop();
      for (int j : rev[i]) {
        if (dist[j] == -1) {
          q.push(j);
          dist[j] = dist[i] + 1;
        }
      }
    }
    return dist;
  };

  auto can_reach = [&](int u, int v, int k, const vector<int>& distv) -> bool {
    if (distv[u] == -1) return false; // otra componenete
    if (k < distv[u]) return false; // no llegamos
    if (distv[u] == k) return true; // directamente
    if (mu[v] == 0 and (k - distv[u]) % lambda[v] == 0) // dando vueltas al ciclo
      return true; 
    return false;
  };

  vector<int> distP = get_rev_dists(P), distNP = get_rev_dists(N+P);
  for(int it = 0; it < Q; ++it) {
    int cnt = 0;
    for (int i = 0; i < N; ++i) {
      int u = node(-1, i);

      if (can_reach(u, P, G[it], distP) or can_reach(u, N+P, G[it], distNP))
        ++cnt;
    }
    answer(cnt);
  }
}

Compilation message

garden.cpp: In function 'void count_routes(int, int, int, int (*)[2], int, int*)':
garden.cpp:21:13: warning: unused variable 'J' [-Wunused-variable]
   21 |   const int J = 29;
      |             ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 776 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 9 ms 5176 KB Output is correct
12 Correct 19 ms 8540 KB Output is correct
13 Correct 44 ms 19796 KB Output is correct
14 Correct 71 ms 27936 KB Output is correct
15 Correct 77 ms 28460 KB Output is correct
16 Correct 58 ms 20476 KB Output is correct
17 Correct 50 ms 18000 KB Output is correct
18 Correct 17 ms 8620 KB Output is correct
19 Correct 74 ms 27988 KB Output is correct
20 Correct 78 ms 28304 KB Output is correct
21 Correct 53 ms 20308 KB Output is correct
22 Correct 49 ms 17788 KB Output is correct
23 Correct 83 ms 30512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 776 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 9 ms 5176 KB Output is correct
12 Correct 19 ms 8540 KB Output is correct
13 Correct 44 ms 19796 KB Output is correct
14 Correct 71 ms 27936 KB Output is correct
15 Correct 77 ms 28460 KB Output is correct
16 Correct 58 ms 20476 KB Output is correct
17 Correct 50 ms 18000 KB Output is correct
18 Correct 17 ms 8620 KB Output is correct
19 Correct 74 ms 27988 KB Output is correct
20 Correct 78 ms 28304 KB Output is correct
21 Correct 53 ms 20308 KB Output is correct
22 Correct 49 ms 17788 KB Output is correct
23 Correct 83 ms 30512 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 121 ms 5232 KB Output is correct
26 Correct 219 ms 8588 KB Output is correct
27 Correct 615 ms 19820 KB Output is correct
28 Correct 1014 ms 27988 KB Output is correct
29 Correct 893 ms 28500 KB Output is correct
30 Correct 510 ms 20492 KB Output is correct
31 Correct 537 ms 18004 KB Output is correct
32 Correct 205 ms 8708 KB Output is correct
33 Correct 1006 ms 28084 KB Output is correct
34 Correct 884 ms 28592 KB Output is correct
35 Correct 504 ms 20480 KB Output is correct
36 Correct 806 ms 18004 KB Output is correct
37 Correct 929 ms 30800 KB Output is correct
38 Correct 1345 ms 34384 KB Output is correct