Submission #1041155

# Submission time Handle Problem Language Result Execution time Memory
1041155 2024-08-01T16:12:44 Z Zicrus Closing Time (IOI23_closing) C++17
63 / 100
120 ms 28048 KB
#include <bits/stdc++.h>
#include "closing.h"
using namespace std; typedef long long ll; int max_score_seperate(int n, int x, int y, ll k, vector<int> u, vector<int> v, vector<int> w) {    priority_queue<pair<ll, ll>> finalQX, finalQY, doubleQ;    vector<vector<pair<ll, ll>>> adj(n);    for (int i = 0; i < w.size(); i++) {        adj[u[i]].push_back({-w[i], v[i]});        adj[v[i]].push_back({-w[i], u[i]});    }     vector<ll> distX(n, 1ll << 62ll), distY(n, 1ll << 62ll);    vector<bool> vstX(n), vstY(n);    priority_queue<pair<ll, ll>> q;    distX[x] = distY[y] = 0;    q.push({0, x});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstX[node]) continue;        vstX[node] = true;        for (auto &e : adj[node]) {            distX[e.second] = min(distX[e.second], distX[node] - e.first);            q.push({-distX[e.second], e.second});        }    }    q.push({0, y});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstY[node]) continue;        vstY[node] = true;        for (auto &e : adj[node]) {            distY[e.second] = min(distY[e.second], distY[node] - e.first);            q.push({-distY[e.second], e.second});        }    }     finalQX.push({0, x});    finalQY.push({0, y});     vstX = vector<bool>(n); vstY = vector<bool>(n);    vector<bool> nbX(n), nbY(n);    nbX[x] = nbY[y] = true;    ll res = 0;    while (!finalQX.empty() || !finalQY.empty() || !doubleQ.empty()) {        // Ensure no visited    
ll t = finalQX.empty() ? 0 : finalQX.top().second;        while (vstX[t] && !finalQX.empty()) { finalQX.pop(); t = finalQX.top().second; }        t = finalQY.empty() ? 0 : finalQY.top().second;        while (vstY[t] && !finalQY.empty()) { finalQY.pop(); t = finalQY.top().second; }        t = doubleQ.empty() ? 0 : doubleQ.top().second;        while ((vstX[t] || vstY[t]) && !doubleQ.empty()) { doubleQ.pop(); t = doubleQ.top().second; }         if (!doubleQ.empty()) {            ll x2 = 1ll << 62ll, y2 = 1ll << 62ll, xy = 1ll << 62ll;            if (!finalQX.empty() && !finalQY.empty()) xy = -finalQX.top().first - finalQY.top().first;            if (finalQX.size() >= 2) {                auto i = finalQX.top(); finalQX.pop();                 t = finalQX.top().second;                while (vstX[t] && !finalQX.empty()) { finalQX.pop(); t = finalQX.top().second; }                if (finalQX.empty()) { finalQX.push(i); goto skipX2; }                 x2 = -i.first - finalQX.top().first;                finalQX.push(i);            }            skipX2:            if (finalQY.size() >= 2) {                auto i = finalQY.top(); finalQY.pop();                 t = finalQY.top().second;                while (vstY[t] && !finalQY.empty()) { finalQY.pop(); t = finalQY.top().second; }                if (finalQY.empty()) { finalQY.push(i); goto skipY2; }                 y2 = -i.first - finalQY.top().first;                finalQY.push(i);            }            skipY2:             ll dub = -doubleQ.top().first;            if (dub < x2 && dub < y2 && dub < xy && dub <= k) {                auto node = doubleQ.top(); doubleQ.pop();                vstX[node.second] = vstY[node.second] = true;                for (auto &e : adj[node.second]) {                    nbX[e.second] = nbY[e.second] = true;                    finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                    finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                    doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});                }                k -= dub;                res += 2;                continue;            }        }         if (finalQX.empty() && finalQY.empty()) break;         ll x1 = 1ll << 62ll, y1 = 1ll << 62ll;        if (!finalQX.empty()) x1 = -finalQX.top().first;        if (!finalQY.empty()) y1 = -finalQY.top().first;         if (x1 < y1) { // X        
  auto node = finalQX.top();            ll dist = -node.first; finalQX.pop();            if (dist > k) break;            vstX[node.second] = true;            for (auto &e : adj[node.second]) {                nbX[e.second] = true;                finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                if (nbY[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstY[node.second] && nbY[node.second]) finalQY.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;        }        else { // Y      
  auto node = finalQY.top();            ll dist = -node.first; finalQY.pop();            if (dist > k) break;            vstY[node.second] = true;            for (auto &e : adj[node.second]) {                nbY[e.second] = true;                finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                if (nbX[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstX[node.second] && nbX[node.second]) finalQX.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;        }    }    return res;} int max_score_meet(int n, int x, int y, ll k, vector<int> u, vector<int> v, vector<int> w) {    priority_queue<pair<ll, ll>> finalQX, finalQY, doubleQ;    vector<vector<pair<ll, ll>>> adj(n);    for (int i = 0; i < w.size(); i++) {        adj[u[i]].push_back({-w[i], v[i]});        adj[v[i]].push_back({-w[i], u[i]});    }     vector<ll> distX(n, 1ll << 62ll), distY(n, 1ll << 62ll);    vector<bool> vstX(n), vstY(n);    priority_queue<pair<ll, ll>> q;    distX[x] = distY[y] = 0;    q.push({0, x});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstX[node]) continue;        vstX[node] = true;        for (auto &e : adj[node]) {            distX[e.second] = min(distX[e.second], distX[node] - e.first);            q.push({-distX[e.second], e.second});        }    }    q.push({0, y});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstY[node]) continue;        vstY[node] = true;        for (auto &e : adj[node]) {            distY[e.second] = min(distY[e.second], distY[node] - e.first);            q.push({-distY[e.second], e.second});        }    }     finalQX.push({0, x});    finalQY.push({0, y});     vstX = vector<bool>(n); vstY = vector<bool>(n);    vector<bool> nbX(n), nbY(n);    nbX[x] = nbY[y] = true;    ll res = 0;    while (!finalQX.empty() || !finalQY.empty() || !doubleQ.empty()) {        // Ensure no visited    
  ll t = finalQX.empty() ? 0 : finalQX.top().second;        while (vstX[t] && !finalQX.empty()) { finalQX.pop(); t = finalQX.top().second; }        t = finalQY.empty() ? 0 : finalQY.top().second;        while (vstY[t] && !finalQY.empty()) { finalQY.pop(); t = finalQY.top().second; }        t = doubleQ.empty() ? 0 : doubleQ.top().second;        while ((vstX[t] || vstY[t]) && !doubleQ.empty()) { doubleQ.pop(); t = doubleQ.top().second; }         if (!doubleQ.empty()) {            ll x2 = 1ll << 62ll, y2 = 1ll << 62ll, xy = 1ll << 62ll;            if (!finalQX.empty() && !finalQY.empty()) xy = -finalQX.top().first - finalQY.top().first;            if (finalQX.size() >= 2) {                auto i = finalQX.top(); finalQX.pop();                 t = finalQX.top().second;                while (vstX[t] && !finalQX.empty()) { finalQX.pop(); t = finalQX.top().second; }                if (finalQX.empty()) { finalQX.push(i); goto skipX1; }                 x2 = -i.first - finalQX.top().first;                finalQX.push(i);            }            skipX1:            if (finalQY.size() >= 2) {                auto i = finalQY.top(); finalQY.pop();                 t = finalQY.top().second;                while (vstY[t] && !finalQY.empty()) { finalQY.pop(); t = finalQY.top().second; }                if (finalQY.empty()) { finalQY.push(i); goto skipY1; }                 y2 = -i.first - finalQY.top().first;                finalQY.push(i);            }            skipY1:             ll dub = -doubleQ.top().first;            if (dub < x2 && dub < y2 && dub < xy && dub <= k) {                auto node = doubleQ.top(); doubleQ.pop();                vstX[node.second] = vstY[node.second] = true;                for (auto &e : adj[node.second]) {                    nbX[e.second] = nbY[e.second] = true;                    finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                    finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                    doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});                }                k -= dub;                res += 2;                break;            }        }         if (finalQX.empty() && finalQY.empty()) break;         ll x1 = 1ll << 62ll, y1 = 1ll << 62ll;        if (!finalQX.empty()) x1 = -finalQX.top().first;        if (!finalQY.empty()) y1 = -finalQY.top().first;         if (x1 < y1) { // X        
    auto node = finalQX.top();            ll dist = -node.first; finalQX.pop();            if (dist > k) break;            vstX[node.second] = true;            for (auto &e : adj[node.second]) {                if (distY[e.second] > distY[node.second]) continue;                nbX[e.second] = true;                finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                if (nbY[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstY[node.second] && nbY[node.second]) finalQY.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;            if (vstY[node.second]) break;        }        else { // Y        
    auto node = finalQY.top();            ll dist = -node.first; finalQY.pop();            if (dist > k) break;            vstY[node.second] = true;            for (auto &e : adj[node.second]) {                if (distX[e.second] > distX[node.second]) continue;                nbY[e.second] = true;                finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                if (nbX[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstX[node.second] && nbX[node.second]) finalQX.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;            if (vstX[node.second]) break;        }    }        for (int i = 0; i < n; i++) {        if (vstX[i]) {            for (auto &e : adj[i]) {                nbX[e.second] = true;                finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                if (nbY[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }        }        if (vstY[i]) {            for (auto &e : adj[i]) {                nbY[e.second] = true;                finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                if (nbX[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }        }if (vstY[i]&&vstX[i]) {            for (auto &e : adj[i]) {                nbY[e.second] = true;                doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});                           }        }    }        for (int i = 0; i < n; i++) {        if (vstX[i]) {            if (!vstY[i] && nbY[i]) finalQY.push({-abs(distX[i] - distY[i]), i});        }        if (vstY[i]) {            if (!vstX[i] && nbX[i]) finalQX.push({-abs(distX[i] - distY[i]), i});        }    }     ////////////////////////////////////////     
while (!finalQX.empty() || !finalQY.empty() || !doubleQ.empty()) {        // Ensure no visited 
  ll t = finalQX.empty() ? 0 : finalQX.top().second;        while (vstX[t] && !finalQX.empty()) { finalQX.pop(); t = finalQX.top().second; }        t = finalQY.empty() ? 0 : finalQY.top().second;        while (vstY[t] && !finalQY.empty()) { finalQY.pop(); t = finalQY.top().second; }        t = doubleQ.empty() ? 0 : doubleQ.top().second;        while ((vstX[t] || vstY[t]) && !doubleQ.empty()) { doubleQ.pop(); t = doubleQ.top().second; }         if (!doubleQ.empty()) {            ll x2 = 1ll << 62ll, y2 = 1ll << 62ll, xy = 1ll << 62ll;            if (!finalQX.empty() && !finalQY.empty()) xy = -finalQX.top().first - finalQY.top().first;            if (finalQX.size() >= 2) {                auto i = finalQX.top(); finalQX.pop();                 t = finalQX.top().second;                while (vstX[t] && !finalQX.empty()) { finalQX.pop(); t = finalQX.top().second; }                if (finalQX.empty()) { finalQX.push(i); goto skipX; }                 x2 = -i.first - finalQX.top().first;                finalQX.push(i);            }            skipX:            if (finalQY.size() >= 2) {                auto i = finalQY.top(); finalQY.pop();                 t = finalQY.top().second;                while (vstY[t] && !finalQY.empty()) { finalQY.pop(); t = finalQY.top().second; }                if (finalQY.empty()) { finalQY.push(i); goto skipY; }                 y2 = -i.first - finalQY.top().first;                finalQY.push(i);            }            skipY:             ll dub = -doubleQ.top().first;            if (dub < x2 && dub < y2 && dub < xy && dub <= k) {                auto node = doubleQ.top(); doubleQ.pop();                vstX[node.second] = vstY[node.second] = true;                for (auto &e : adj[node.second]) {                    nbX[e.second] = nbY[e.second] = true;                    finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                    finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                    doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});                }                k -= dub;                res += 2;                continue;            }        }         if (finalQX.empty() && finalQY.empty()) break;         ll x1 = 1ll << 62ll, y1 = 1ll << 62ll;        if (!finalQX.empty()) x1 = -finalQX.top().first;        if (!finalQY.empty()) y1 = -finalQY.top().first;         if (x1 < y1) { // X        
    auto node = finalQX.top();            ll dist = -node.first; finalQX.pop();            if (dist > k) break;            vstX[node.second] = true;            for (auto &e : adj[node.second]) {                nbX[e.second] = true;                finalQX.push({-(vstY[e.second] ? abs(distX[e.second] - distY[e.second]) : distX[e.second]), e.second});                if (nbY[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstY[node.second] && nbY[node.second]) finalQY.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;        }        else { // Y        
    auto node = finalQY.top();            ll dist = -node.first; finalQY.pop();            if (dist > k) break;            vstY[node.second] = true;            for (auto &e : adj[node.second]) {                nbY[e.second] = true;                finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                if (nbX[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstX[node.second] && nbX[node.second]) finalQX.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;        }    }     return res;} int max_score(int n, int x, int y, ll k, vector<int> u, vector<int> v, vector<int> w) {    ll sep = max_score_seperate(n, x, y, k, u, v, w);    ll meet = max_score_meet(n, x, y, k, u, v, w);    ll res = max(sep, meet);    return res;}

Compilation message

closing.cpp: In function 'int max_score_seperate(int, int, int, ll, std::vector<int>, std::vector<int>, std::vector<int>)':
closing.cpp:3:261: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    3 | using namespace std; typedef long long ll; int max_score_seperate(int n, int x, int y, ll k, vector<int> u, vector<int> v, vector<int> w) {    priority_queue<pair<ll, ll>> finalQX, finalQY, doubleQ;    vector<vector<pair<ll, ll>>> adj(n);    for (int i = 0; i < w.size(); i++) {        adj[u[i]].push_back({-w[i], v[i]});        adj[v[i]].push_back({-w[i], u[i]});    }     vector<ll> distX(n, 1ll << 62ll), distY(n, 1ll << 62ll);    vector<bool> vstX(n), vstY(n);    priority_queue<pair<ll, ll>> q;    distX[x] = distY[y] = 0;    q.push({0, x});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstX[node]) continue;        vstX[node] = true;        for (auto &e : adj[node]) {            distX[e.second] = min(distX[e.second], distX[node] - e.first);            q.push({-distX[e.second], e.second});        }    }    q.push({0, y});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstY[node]) continue;        vstY[node] = true;        for (auto &e : adj[node]) {            distY[e.second] = min(distY[e.second], distY[node] - e.first);            q.push({-distY[e.second], e.second});        }    }     finalQX.push({0, x});    finalQY.push({0, y});     vstX = vector<bool>(n); vstY = vector<bool>(n);    vector<bool> nbX(n), nbY(n);    nbX[x] = nbY[y] = true;    ll res = 0;    while (!finalQX.empty() || !finalQY.empty() || !doubleQ.empty()) {        // Ensure no visited
      |                                                                                                                                                                                                                                                                   ~~^~~~~~~~~~
closing.cpp: In function 'int max_score_meet(int, int, int, ll, std::vector<int>, std::vector<int>, std::vector<int>)':
closing.cpp:6:877: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 |   auto node = finalQY.top();            ll dist = -node.first; finalQY.pop();            if (dist > k) break;            vstY[node.second] = true;            for (auto &e : adj[node.second]) {                nbY[e.second] = true;                finalQY.push({-(vstX[e.second] ? abs(distX[e.second] - distY[e.second]) : distY[e.second]), e.second});                if (nbX[e.second]) doubleQ.push({-max(distX[e.second], distY[e.second]), e.second});            }            if (!vstX[node.second] && nbX[node.second]) finalQX.push({-abs(distX[node.second] - distY[node.second]), node.second});            k -= dist;            res++;        }    }    return res;} int max_score_meet(int n, int x, int y, ll k, vector<int> u, vector<int> v, vector<int> w) {    priority_queue<pair<ll, ll>> finalQX, finalQY, doubleQ;    vector<vector<pair<ll, ll>>> adj(n);    for (int i = 0; i < w.size(); i++) {        adj[u[i]].push_back({-w[i], v[i]});        adj[v[i]].push_back({-w[i], u[i]});    }     vector<ll> distX(n, 1ll << 62ll), distY(n, 1ll << 62ll);    vector<bool> vstX(n), vstY(n);    priority_queue<pair<ll, ll>> q;    distX[x] = distY[y] = 0;    q.push({0, x});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstX[node]) continue;        vstX[node] = true;        for (auto &e : adj[node]) {            distX[e.second] = min(distX[e.second], distX[node] - e.first);            q.push({-distX[e.second], e.second});        }    }    q.push({0, y});    while (!q.empty()) {        ll node = q.top().second; q.pop();        if (vstY[node]) continue;        vstY[node] = true;        for (auto &e : adj[node]) {            distY[e.second] = min(distY[e.second], distY[node] - e.first);            q.push({-distY[e.second], e.second});        }    }     finalQX.push({0, x});    finalQY.push({0, y});     vstX = vector<bool>(n); vstY = vector<bool>(n);    vector<bool> nbX(n), nbY(n);    nbX[x] = nbY[y] = true;    ll res = 0;    while (!finalQX.empty() || !finalQY.empty() || !doubleQ.empty()) {        // Ensure no visited
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 117 ms 27928 KB Output is correct
2 Correct 120 ms 28048 KB Output is correct
3 Correct 77 ms 4700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 344 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 344 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 4 ms 344 KB Output is correct
26 Correct 4 ms 604 KB Output is correct
27 Correct 2 ms 764 KB Output is correct
28 Correct 3 ms 860 KB Output is correct
29 Correct 2 ms 944 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 2 ms 856 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 432 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 352 KB Output is correct
24 Correct 0 ms 352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 432 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 352 KB Output is correct
36 Correct 0 ms 352 KB Output is correct
37 Correct 1 ms 348 KB Output is correct
38 Correct 1 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 436 KB Output is correct
41 Correct 0 ms 352 KB Output is correct
42 Correct 0 ms 352 KB Output is correct
43 Correct 0 ms 444 KB Output is correct
44 Correct 0 ms 352 KB Output is correct
45 Correct 0 ms 352 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 1 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 0 ms 444 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 1 ms 348 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 432 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 352 KB Output is correct
43 Correct 0 ms 352 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 1 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 436 KB Output is correct
48 Correct 0 ms 352 KB Output is correct
49 Correct 0 ms 352 KB Output is correct
50 Correct 0 ms 444 KB Output is correct
51 Correct 0 ms 352 KB Output is correct
52 Correct 0 ms 352 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 0 ms 348 KB Output is correct
56 Correct 0 ms 444 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Incorrect 1 ms 348 KB 2nd lines differ - on the 1st token, expected: '57', found: '56'
59 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 4 ms 344 KB Output is correct
27 Correct 4 ms 604 KB Output is correct
28 Correct 2 ms 764 KB Output is correct
29 Correct 3 ms 860 KB Output is correct
30 Correct 2 ms 944 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 2 ms 856 KB Output is correct
33 Correct 2 ms 860 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 432 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 0 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 352 KB Output is correct
51 Correct 0 ms 352 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 0 ms 348 KB Output is correct
55 Correct 0 ms 436 KB Output is correct
56 Correct 0 ms 352 KB Output is correct
57 Correct 0 ms 352 KB Output is correct
58 Correct 0 ms 444 KB Output is correct
59 Correct 0 ms 352 KB Output is correct
60 Correct 0 ms 352 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 1 ms 348 KB Output is correct
63 Correct 0 ms 348 KB Output is correct
64 Correct 0 ms 444 KB Output is correct
65 Correct 0 ms 348 KB Output is correct
66 Incorrect 1 ms 348 KB 2nd lines differ - on the 1st token, expected: '57', found: '56'
67 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 4 ms 344 KB Output is correct
27 Correct 4 ms 604 KB Output is correct
28 Correct 2 ms 764 KB Output is correct
29 Correct 3 ms 860 KB Output is correct
30 Correct 2 ms 944 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 2 ms 856 KB Output is correct
33 Correct 2 ms 860 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 432 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 0 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 352 KB Output is correct
51 Correct 0 ms 352 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 0 ms 348 KB Output is correct
55 Correct 0 ms 436 KB Output is correct
56 Correct 0 ms 352 KB Output is correct
57 Correct 0 ms 352 KB Output is correct
58 Correct 0 ms 444 KB Output is correct
59 Correct 0 ms 352 KB Output is correct
60 Correct 0 ms 352 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 1 ms 348 KB Output is correct
63 Correct 0 ms 348 KB Output is correct
64 Correct 0 ms 444 KB Output is correct
65 Correct 0 ms 348 KB Output is correct
66 Incorrect 1 ms 348 KB 2nd lines differ - on the 1st token, expected: '57', found: '56'
67 Halted 0 ms 0 KB -