Submission #1041048

# Submission time Handle Problem Language Result Execution time Memory
1041048 2024-08-01T14:15:53 Z RecursiveCo Closing Time (IOI23_closing) C++17
83 / 100
1000 ms 60808 KB
// CF template, version 3.0

#include <bits/stdc++.h>

using namespace std;

#define improvePerformance ios_base::sync_with_stdio(false); cin.tie(0)
#define getTest int t; cin >> t
#define eachTest for (int _var=0;_var<t;_var++)
#define get(name) int (name); cin >> (name)
#define out(o) cout << (o)
#define getList(cnt, name) vector<int> (name); for (int _=0;_<(cnt);_++) { get(a); (name).push_back(a); }
#define sortl(name) sort((name).begin(), (name).end())
#define rev(name) reverse((name).begin(), (name).end())
#define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
#define decision(b) if (b){out("YES");}else{out("NO");}

//#define int long long int

template <typename T, typename I>
struct segtree {
    int n;
    vector<T> tree;
    vector<I> initial;
    T id;

    segtree(int i_n, vector<I> i_initial, T i_id): n(i_n), initial(i_initial), id(i_id) {
        tree.resize(4 * n);
    }

    T conquer(T left, T right) {
        // write your conquer function
    }

    T value(I inp) {
        // write your value function
    }

    void build(int v, int l, int r) {
        if (l == r) tree[v] = value(initial[l]);
        else {
            int middle = (l + r) / 2;
            build(2 * v, l, middle);
            build(2 * v + 1, middle + 1, r);
            tree[v] = conquer(tree[2 * v], tree[2 * v + 1]);
        }
    }

    void upd(int v, int l, int r, int i, I x) {
        if (l == r) tree[v] = value(x);
        else {
            int middle = (l + r) / 2;
            if (middle >= i) upd(2 * v, l, middle, i, x);
            else upd(2 * v + 1, middle + 1, r, i, x);
            tree[v] = conquer(tree[2 * v], tree[2 * v + 1]);
        }
    }

    T query(int v, int l, int r, int ql, int qr) {
        if (ql <= l && r <= qr) return tree[v];
        else if (r < ql || qr < l) return id;
        int middle = (l + r) / 2;
        T left = query(2 * v, l, middle, ql, qr);
        T right = query(2 * v + 1, middle + 1, r, ql, qr);
        return conquer(left, right);
    }
};

// vector<int>

vector<vector<pair<int, int>>> adjList;
vector<long long> fromX;
vector<long long> fromY;

vector<vector<long long>> arrays;

void dfs(int v, int p, long long d, int which) {
    if (which) fromY[v] = d;
    else fromX[v] = d;
    for (auto pa: adjList[v]) {
        int con = pa.first;
        long long w = pa.second;
        if (con == p) continue;
        dfs(con, v, d + w, which);
    }
}

void comp(int v, int p1, int p2, long long d, long long add) {
    arrays.back().push_back(add + d);
    for (auto pa: adjList[v]) {
        int con = pa.first;
        long long w = pa.second;
        if (con == p1 || con == p2) continue;
        comp(con, v, -1, d + w, add);
    }
}

int max_score(int N, int X, int Y, long long K, vector<int> U, vector<int> V, vector<int> W) {
    adjList.clear();
    adjList.resize(N);
    fromX.clear();
    fromX.resize(N);
    fromY.clear();
    fromY.resize(N);
    arrays.clear();
    forto(N - 1, i) {
        int a = U[i];
        int b = V[i];
        int w = W[i];
        adjList[a].push_back({b, w});
        adjList[b].push_back({a, w});
    }
    bool path = true;
    forto(N - 1, i) if (V[i] - U[i] != 1) path = false;
    dfs(X, -1, 0ll, 0);
    dfs(Y, -1, 0ll, 1);
    int ans = 0;
    if (fromY[X] > 2 * K) {
        vector<long long> paths;
        forto(N, i) {
            paths.push_back(min(fromX[i], fromY[i]));
        }
        sortl(paths);
        long long sum = 0;
        forto(N, i) {
            if (sum + paths[i] > K) break;
            sum += paths[i];
            ans++;
        }
    } else if (path) {
        long long C = fromX[Y]; // = fromY[X]
        // CASE 1: Stuff gets taken twice on both sides.
        // Everything in the middle gets taken twice.
        // Greedy/bruteforce on the sides.
        int ans1 = 0;
        long long sum1 = 0;
        int middle1 = 0;
        vector<long long> sides1;
        forto(N, i) {
            long long val = max(fromX[i], fromY[i]);
            if (val < C) sum1 += val, middle1++;
            else sides1.push_back(min(fromX[i], fromY[i]));
        }
        sortl(sides1);
        int s1 = sides1.size();
        if (sum1 <= K) ans1 = max(ans1, 2 * middle1);
        forto(s1, i) {
            if (sum1 + sides1[i] > K) break;
            sum1 += sides1[i];
            long long extral = (K - sum1) / C;
            int extra;
            if (extral > (long long) i + 1) extra = i + 1;
            else extra = (int) extral;
            ans1 = max(ans1, 2 * middle1 + (i + 1) + extra);
        }

        // CASE 2: Stuff gets taken twice on one of the two sides.
        // Everything in the middle gets taken once.
        // Suppose wlog the twice-taken stuff occurs on Y's side, then some suffix spanning to at least the halfway point of the middle must get taken twice.
        // CASE 2.1: On Y's side.
        int ans21 = 0;
        long long sum21 = 0;
        int middle21 = 0;
        vector<long long> delta21;
        vector<long long> side21;
        forto(N, i) {
            long long val = min(fromX[i], fromY[i]);
            if (max(fromX[i], fromY[i]) < C) sum21 += val, middle21++;
            if (max(fromX[i], fromY[i]) < C) {
                if (2 * fromY[i] <= C) sum21 += max(fromX[i], fromY[i]) - val, middle21++;
                else delta21.push_back(fromY[i] - fromX[i]);
            } else if (fromX[i] <= fromY[i]) {
                delta21.push_back(fromX[i]);
            } else {
                side21.push_back(fromY[i]);
            }
        }
        sortl(delta21);
        sortl(side21);
        if (sum21 <= K) ans21 = max(ans21, middle21);
        int ds21 = delta21.size();
        int s21 = side21.size();
        forto(ds21, i) {
            if (sum21 + delta21[i] > K) break;
            ans21 = max(ans21, middle21 + (i + 1));
            sum21 += delta21[i];
            long long here = sum21;
            forto(s21, j) {
                if (here + side21[j] > K) break;
                here += side21[j];
                long long extral = (K - here) / C;
                int extra;
                if (extral > (long long) j + 1) extra = j + 1;
                else extra = (int) extral;
                ans21 = max(ans21, middle21 + (i + 1) + (j + 1) + extra);
            }
        }

        // CASE 2.2: On X's side.
        int ans22 = 0;
        long long sum22 = 0;
        int middle22 = 0;
        vector<long long> delta22;
        vector<long long> side22;
        forto(N, i) {
            long long val = min(fromX[i], fromY[i]);
            if (max(fromX[i], fromY[i]) < C) sum22 += val, middle22++;
            if (max(fromX[i], fromY[i]) < C) {
                if (2 * fromX[i] <= C) sum22 += max(fromX[i], fromY[i]) - val, middle22++;
                else delta22.push_back(fromX[i] - fromY[i]);
            } else if (fromY[i] <= fromX[i]) {
                delta22.push_back(fromY[i]);
            } else {
                side22.push_back(fromX[i]);
            }
        }
        sortl(delta22);
        sortl(side22);
        if (sum22 <= K) ans22 = max(ans22, middle22);
        int ds22 = delta22.size();
        int s22 = side22.size();
        forto(ds22, i) {
            if (sum22 + delta22[i] > K) break;
            ans22 = max(ans22, middle22 + (i + 1));
            sum22 += delta22[i];
            long long here = sum22;
            forto(s22, j) {
                if (here + side22[j] > K) break;
                here += side22[j];
                long long extral = (K - here) / C;
                int extra;
                if (extral > (long long) j + 1) extra = j + 1;
                else extra = (int) extral;
                ans22 = max(ans22, middle22 + (i + 1) + (j + 1) + extra);
            }
        }

        // CASE 3: Nothing on the sides gets taken twice.
        // Then we greedy on the sides while solving the problem in the middle.
        // Yeah O(n^2log(n)) passes. Pretty sure.
        int ans3 = 0;
        vector<long long> sides3;
        vector<long long> midsmall3;
        vector<long long> middelta3;
        long long midsum3 = 0;
        forto(N, i) {
            long long val = max(fromX[i], fromY[i]);
            if (val < C) {
                midsmall3.push_back(min(fromX[i], fromY[i]));
                middelta3.push_back(val - min(fromX[i], fromY[i]));
                midsum3 += min(fromX[i], fromY[i]);
            } else {
                sides3.push_back(min(fromX[i], fromY[i]));
            }
        }
        sortl(sides3);
        sortl(midsmall3);
        sortl(middelta3);
        int s3 = sides3.size();
        int ms3 = midsmall3.size();
        int md3 = middelta3.size();
        long long sum3 = 0;
        forto(s3, i) {
            if (sum3 + sides3[i] > K) break;
            sum3 += sides3[i];
            ans3 = max(ans3, i + 1);
            long long tot = sum3;
            forto(ms3, j) {
                if (tot + midsmall3[j] > K) break;
                tot += midsmall3[j];
                ans3 = max(ans3, (i + 1) + (j + 1));
            }
            if (sum3 + midsum3 <= K) {
                ans3 = max(ans3, (i + 1) + ms3);
                long long higher = sum3 + midsum3;
                forto(md3, j) {
                    if (higher + middelta3[j] > K) break;
                    higher += middelta3[j];
                    ans3 = max(ans3, (i + 1) + ms3 + (j + 1));
                }
            }
        }

        ans = max({ans1, ans21, ans22, ans3});
    } else {
        long long C = fromX[Y]; // = fromY[X]
        vector<pair<long long, int>> mainpath;
        forto(N, i) {
            if (fromX[i] + fromY[i] == C) mainpath.push_back({fromX[i], i});
        }
        sortl(mainpath);
        int l = mainpath.size();
        forto(l, i) {
            vector<long long> here;
            arrays.push_back(here);
            int v = mainpath[i].second;
            comp(v, i? mainpath[i - 1].second: -1, i < l - 1? mainpath[i + 1].second: -1, 0ll, min(fromX[v], fromY[v]));
            sortl(arrays.back());
        }

        // CASE 1: All ones.
        // In this case, a simple greedy algorithm suffices.
        int ans1 = 0;
        vector<long long> ones1;
        forto(N, i) ones1.push_back(min(fromX[i], fromY[i]));
        sortl(ones1);
        long long sum1 = 0ll;
        forto(N, i) {
            if (sum1 + ones1[i] > K) break;
            sum1 += ones1[i];
            ans1++;
        }

        // CASE 2: Not all ones.
        // In this case, we can run a DP.
        vector<vector<long long>> dp(3, vector<long long>(2 * N + 1, 1e18 + 5));
        vector<vector<long long>> newdp(3, vector<long long>(2 * N + 1, 1e18 + 5));
        dp[0][0] = 0;
        forto(l, i) {
            forto(3, j) forto(2 * N + 1, k) newdp[j][k] = 1e18 + 5;
            int v = mainpath[i].second;
            long long mini = min(fromX[v], fromY[v]);
            long long maxi = max(fromX[v], fromY[v]);
            long long delta = maxi - mini;
            int sz = arrays[i].size();
            vector<long long> min1(2 * sz + 1, 1e18 + 5);
            vector<long long> min2(2 * sz + 1, 1e18 + 5);
            long long sum = 0ll;
            forto(sz, j) {
                sum += arrays[i][j];
                min1[j + 1] = sum;
                long long for2 = sum;
                forto(j + 1, k) {
                    for2 += delta;
                    min2[(j + 1) + (k + 1)] = min(min2[(j + 1) + (k + 1)], for2);
                }
            }
            forto(2 * N + 1, j) {
                if (j < i) continue;
                forto(2 * sz + 1, k) {
                    if (k == 0) continue;
                    if (j + k > 2 * N) break;
                    newdp[0][j + k] = min(newdp[0][j + k], dp[0][j] + min1[k]);
                    newdp[1][j + k] = min(newdp[1][j + k], min(dp[0][j], dp[1][j]) + min2[k]);
                    newdp[2][j + k] = min(newdp[2][j + k], min(dp[1][j], dp[2][j]) + min1[k]);
                }
            }

            swap(dp, newdp);
        }
        int ans2 = 0;
        forto(2 * N + 1, i) {
            long long mincost = min({dp[0][i], dp[1][i], dp[2][i]});
            if (mincost <= K) ans2 = i;
        }

        ans = max({ans1, ans2});
    }
    return ans;
}

Compilation message

closing.cpp: In function 'int max_score(int, int, int, long long int, std::vector<int>, std::vector<int>, std::vector<int>)':
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:106:5: note: in expansion of macro 'forto'
  106 |     forto(N - 1, i) {
      |     ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:114:5: note: in expansion of macro 'forto'
  114 |     forto(N - 1, i) if (V[i] - U[i] != 1) path = false;
      |     ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:120:9: note: in expansion of macro 'forto'
  120 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:125:9: note: in expansion of macro 'forto'
  125 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:139:9: note: in expansion of macro 'forto'
  139 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:147:9: note: in expansion of macro 'forto'
  147 |         forto(s1, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:166:9: note: in expansion of macro 'forto'
  166 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:183:9: note: in expansion of macro 'forto'
  183 |         forto(ds21, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:188:13: note: in expansion of macro 'forto'
  188 |             forto(s21, j) {
      |             ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:205:9: note: in expansion of macro 'forto'
  205 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:222:9: note: in expansion of macro 'forto'
  222 |         forto(ds22, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:227:13: note: in expansion of macro 'forto'
  227 |             forto(s22, j) {
      |             ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:246:9: note: in expansion of macro 'forto'
  246 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:263:9: note: in expansion of macro 'forto'
  263 |         forto(s3, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:268:13: note: in expansion of macro 'forto'
  268 |             forto(ms3, j) {
      |             ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:276:17: note: in expansion of macro 'forto'
  276 |                 forto(md3, j) {
      |                 ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:288:9: note: in expansion of macro 'forto'
  288 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:293:9: note: in expansion of macro 'forto'
  293 |         forto(l, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:305:9: note: in expansion of macro 'forto'
  305 |         forto(N, i) ones1.push_back(min(fromX[i], fromY[i]));
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:308:9: note: in expansion of macro 'forto'
  308 |         forto(N, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:319:9: note: in expansion of macro 'forto'
  319 |         forto(l, i) {
      |         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:320:13: note: in expansion of macro 'forto'
  320 |             forto(3, j) forto(2 * N + 1, k) newdp[j][k] = 1e18 + 5;
      |             ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'k' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:320:25: note: in expansion of macro 'forto'
  320 |             forto(3, j) forto(2 * N + 1, k) newdp[j][k] = 1e18 + 5;
      |                         ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:329:13: note: in expansion of macro 'forto'
  329 |             forto(sz, j) {
      |             ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'k' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:333:17: note: in expansion of macro 'forto'
  333 |                 forto(j + 1, k) {
      |                 ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'j' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:338:13: note: in expansion of macro 'forto'
  338 |             forto(2 * N + 1, j) {
      |             ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'k' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:340:17: note: in expansion of macro 'forto'
  340 |                 forto(2 * sz + 1, k) {
      |                 ^~~~~
closing.cpp:15:35: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   15 | #define forto(name, var) for (int (var) = 0; (var) < (name); (var)++)
      |                                   ^
closing.cpp:352:9: note: in expansion of macro 'forto'
  352 |         forto(2 * N + 1, i) {
      |         ^~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 65 ms 26652 KB Output is correct
2 Correct 73 ms 31072 KB Output is correct
3 Correct 42 ms 2908 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 440 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 440 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 2 ms 344 KB Output is correct
26 Correct 9 ms 928 KB Output is correct
27 Correct 1 ms 860 KB Output is correct
28 Correct 1 ms 860 KB Output is correct
29 Correct 6 ms 972 KB Output is correct
30 Correct 2 ms 856 KB Output is correct
31 Correct 2 ms 860 KB Output is correct
32 Correct 1 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 1 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 1 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 440 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 1 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 1 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 1 ms 348 KB Output is correct
52 Correct 0 ms 348 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 0 ms 348 KB Output is correct
55 Correct 0 ms 348 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 440 KB Output is correct
62 Correct 1 ms 348 KB Output is correct
63 Correct 2 ms 348 KB Output is correct
64 Correct 2 ms 348 KB Output is correct
65 Correct 2 ms 440 KB Output is correct
66 Correct 2 ms 348 KB Output is correct
67 Correct 3 ms 348 KB Output is correct
68 Correct 3 ms 344 KB Output is correct
69 Correct 3 ms 600 KB Output is correct
70 Correct 3 ms 348 KB Output is correct
71 Correct 3 ms 348 KB Output is correct
72 Correct 3 ms 556 KB Output is correct
73 Correct 2 ms 348 KB Output is correct
74 Correct 2 ms 348 KB Output is correct
75 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 440 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 2 ms 344 KB Output is correct
27 Correct 9 ms 928 KB Output is correct
28 Correct 1 ms 860 KB Output is correct
29 Correct 1 ms 860 KB Output is correct
30 Correct 6 ms 972 KB Output is correct
31 Correct 2 ms 856 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
33 Correct 1 ms 860 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 0 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
51 Correct 0 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 0 ms 348 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 0 ms 348 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Correct 0 ms 348 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 0 ms 348 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 0 ms 348 KB Output is correct
63 Correct 0 ms 348 KB Output is correct
64 Correct 1 ms 348 KB Output is correct
65 Correct 0 ms 348 KB Output is correct
66 Correct 1 ms 348 KB Output is correct
67 Correct 1 ms 348 KB Output is correct
68 Correct 1 ms 348 KB Output is correct
69 Correct 1 ms 440 KB Output is correct
70 Correct 1 ms 348 KB Output is correct
71 Correct 2 ms 348 KB Output is correct
72 Correct 2 ms 348 KB Output is correct
73 Correct 2 ms 440 KB Output is correct
74 Correct 2 ms 348 KB Output is correct
75 Correct 3 ms 348 KB Output is correct
76 Correct 3 ms 344 KB Output is correct
77 Correct 3 ms 600 KB Output is correct
78 Correct 3 ms 348 KB Output is correct
79 Correct 3 ms 348 KB Output is correct
80 Correct 3 ms 556 KB Output is correct
81 Correct 2 ms 348 KB Output is correct
82 Correct 2 ms 348 KB Output is correct
83 Correct 1 ms 348 KB Output is correct
84 Correct 2 ms 344 KB Output is correct
85 Correct 7 ms 348 KB Output is correct
86 Correct 1 ms 448 KB Output is correct
87 Correct 6 ms 344 KB Output is correct
88 Correct 6 ms 348 KB Output is correct
89 Correct 53 ms 1116 KB Output is correct
90 Correct 52 ms 1116 KB Output is correct
91 Correct 86 ms 1116 KB Output is correct
92 Correct 46 ms 1112 KB Output is correct
93 Correct 83 ms 1364 KB Output is correct
94 Correct 100 ms 1368 KB Output is correct
95 Correct 94 ms 1432 KB Output is correct
96 Correct 80 ms 1116 KB Output is correct
97 Correct 96 ms 1260 KB Output is correct
98 Correct 74 ms 1112 KB Output is correct
99 Correct 53 ms 1112 KB Output is correct
100 Correct 33 ms 860 KB Output is correct
101 Correct 9 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 440 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 2 ms 344 KB Output is correct
27 Correct 9 ms 928 KB Output is correct
28 Correct 1 ms 860 KB Output is correct
29 Correct 1 ms 860 KB Output is correct
30 Correct 6 ms 972 KB Output is correct
31 Correct 2 ms 856 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
33 Correct 1 ms 860 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 0 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
51 Correct 0 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 0 ms 348 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 0 ms 348 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Correct 0 ms 348 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 0 ms 348 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 0 ms 348 KB Output is correct
63 Correct 0 ms 348 KB Output is correct
64 Correct 1 ms 348 KB Output is correct
65 Correct 0 ms 348 KB Output is correct
66 Correct 1 ms 348 KB Output is correct
67 Correct 1 ms 348 KB Output is correct
68 Correct 1 ms 348 KB Output is correct
69 Correct 1 ms 440 KB Output is correct
70 Correct 1 ms 348 KB Output is correct
71 Correct 2 ms 348 KB Output is correct
72 Correct 2 ms 348 KB Output is correct
73 Correct 2 ms 440 KB Output is correct
74 Correct 2 ms 348 KB Output is correct
75 Correct 3 ms 348 KB Output is correct
76 Correct 3 ms 344 KB Output is correct
77 Correct 3 ms 600 KB Output is correct
78 Correct 3 ms 348 KB Output is correct
79 Correct 3 ms 348 KB Output is correct
80 Correct 3 ms 556 KB Output is correct
81 Correct 2 ms 348 KB Output is correct
82 Correct 2 ms 348 KB Output is correct
83 Correct 1 ms 348 KB Output is correct
84 Correct 2 ms 344 KB Output is correct
85 Correct 7 ms 348 KB Output is correct
86 Correct 1 ms 448 KB Output is correct
87 Correct 6 ms 344 KB Output is correct
88 Correct 6 ms 348 KB Output is correct
89 Correct 53 ms 1116 KB Output is correct
90 Correct 52 ms 1116 KB Output is correct
91 Correct 86 ms 1116 KB Output is correct
92 Correct 46 ms 1112 KB Output is correct
93 Correct 83 ms 1364 KB Output is correct
94 Correct 100 ms 1368 KB Output is correct
95 Correct 94 ms 1432 KB Output is correct
96 Correct 80 ms 1116 KB Output is correct
97 Correct 96 ms 1260 KB Output is correct
98 Correct 74 ms 1112 KB Output is correct
99 Correct 53 ms 1112 KB Output is correct
100 Correct 33 ms 860 KB Output is correct
101 Correct 9 ms 600 KB Output is correct
102 Correct 211 ms 5456 KB Output is correct
103 Correct 665 ms 5716 KB Output is correct
104 Execution timed out 1062 ms 60808 KB Time limit exceeded
105 Halted 0 ms 0 KB -