답안 #102259

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
102259 2019-03-24T01:56:42 Z Benq Bitaro, who Leaps through Time (JOI19_timeleap) C++14
100 / 100
1059 ms 78072 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 1<<19;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

template<class A, class B> A operator+=(A& l, const B& r) { return l = l+r; }
template<class A, class B> A operator-=(A& l, const B& r) { return l = l-r; }
template<class A, class B> A operator*=(A& l, const B& r) { return l = l*r; }
template<class A, class B> A operator/=(A& l, const B& r) { return l = l/r; }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; trav(a,x) pr(!fst?", ":"",a), fst = 0; 
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); } 
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modInt {
    T val;
    T mod = 0;
    // static const T mod = MOD;

    void normalize() {
        if (mod == 0) return;
        val %= mod; if (val < 0) val += mod;
    }
    modInt(T v = 0, T m = 0) : val(v), mod(m) { normalize(); }
    // modInt(T v = 0, T m = 0) : val(v) { normalize(); }

    explicit operator T() const { return val; }
    friend ostream& operator<<(ostream& os, const modInt& a) { return os << a.val; }
    friend bool operator==(const modInt& a, const modInt& b) { return a.val == b.val; }
    friend bool operator!=(const modInt& a, const modInt& b) { return !(a == b); }

    friend void check(modInt& a, modInt& b) { // make sure all operations are valid
        // comment out if mod is static const
        if (a.mod > 0 && b.mod > 0) { assert(a.mod == b.mod); return; }
        T mod = max(a.mod,b.mod); if (mod == 0) mod = MOD;
        if (a.mod != mod) { a.mod = mod; a.normalize(); }
        if (b.mod != mod) { b.mod = mod; b.normalize(); }
    }
    friend modInt operator+(modInt a, modInt b) {
        check(a,b); a.val += (T)b;
        if (a.val >= a.mod) a.val -= a.mod;
        return a;
    }
    friend modInt operator-(modInt a, modInt b) {
        check(a,b); a.val -= (T)b; 
        if (a.val < 0) a.val += a.mod; 
        return a;
    }
    friend modInt operator-(const modInt& a) { return modInt(0)-a; }

    friend modInt operator*(modInt a, modInt b) {
        check(a,b); a.val = (ll)a.val*(T)b%a.mod; return a;
    }
    friend modInt exp(modInt a, ll p) {
        modInt ans(1,a.mod);
        for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modInt inv(const modInt& a) {
        return {invGeneral(a.val,a.mod),a.mod};
        // return exp(b,b.mod-2) if prime
    }
    friend modInt operator/(modInt a, modInt b) { 
        check(a,b); return a*inv(b); 
    }
};

typedef modInt<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

struct road {
    ll ftime, fprice; // if start at t=-infty
    ll tinc, pinc; // time starts increasing, price remains the same or price starts increasing, time remains same 
    road() {
        ftime = -INF, fprice = 0;
        tinc = -INF, pinc = INF;
    }
    road(ll s, ll e) {
        ftime = s+1, fprice = 0;
        tinc = s, pinc = e-1;
    }
    ll getTime(ll x) { return ftime+max(0LL,min(pinc,x)-tinc); }
    ll getPrice(ll x) { return fprice+max(0LL,x-pinc); }
    friend void pr(const road& r) { pr("{",r.ftime,", ", r.fprice, " | ", r.tinc, ", ",r.pinc,"}"); }
};

road operator+(road l, road r) {
    road a;
    a.ftime = r.getTime(l.ftime);
    a.fprice = l.fprice+r.getPrice(l.ftime);
    if (l.ftime <= r.tinc) {
        if (l.ftime+l.pinc-l.tinc <= r.tinc) {
            a.tinc = a.pinc = l.pinc;
        } else if (l.ftime+l.pinc-l.tinc <= r.pinc) {
            a.tinc = l.tinc+r.tinc-l.ftime; a.pinc = l.pinc;
        } else {
            a.tinc = l.tinc+r.tinc-l.ftime; 
            a.pinc = l.pinc-(l.ftime+l.pinc-l.tinc-r.pinc);
        }
    } else if (l.ftime <= r.pinc) {
        a.tinc = l.tinc;
        if (l.ftime+l.pinc-l.tinc <= r.pinc) {
            a.pinc = l.pinc;
        } else {
            a.pinc = l.pinc-(l.ftime+l.pinc-l.tinc-r.pinc);
        }
    } else {
        a.tinc = a.pinc = l.tinc;
    }
    return a;
}

int N,Q,L[MX],R[MX];

template<class T, int SZ> struct Seg { // SZ should be power of 2
    T seg[2*SZ][2], ID = road();

    Seg() { F0R(i,2*SZ) F0R(j,2) seg[i][j] = road(); }
    T comb(T a, T b) { return a+b; }
    // easily change this to min or max
    // comb(ID,b) must equal b

    void build() { F0Rd(i,SZ) seg[i] = comb(seg[2*i],seg[2*i+1]); }

    void upd(int p) {  // set value at position p
        p += SZ;
        
        for (seg[p][0] = seg[p][1] = road(L[p-SZ],R[p-SZ]); p > 1; p >>= 1) {
            seg[p>>1][0] = comb(seg[(p|1)^1][0],seg[p|1][0]);
            seg[p>>1][1] = comb(seg[p|1][1],seg[(p|1)^1][1]);
            // ps("HA",p,seg[p>>1][0],seg[(p|1)^1][0],seg[p][0]);
        }
            // make sure non-commutative operations work
    }

    T query(int l, int r, int ind) {  // sum on interval [l, r]
        T res1 = ID, res2 = ID; r++;
        if (ind == 0) {
            for (l += SZ, r += SZ; l < r; l >>= 1, r >>= 1) {
                if (l&1) res1 = comb(res1,seg[l++][0]);
                if (r&1) res2 = comb(seg[--r][0],res2);
            }
            return comb(res1,res2);
        } else {
            for (l += SZ, r += SZ; l < r; l >>= 1, r >>= 1) {
                if (l&1) res1 = comb(seg[l++][1],res1);
                if (r&1) res2 = comb(res2,seg[--r][1]);
            }
            return comb(res2,res1);
        }
    }
};

Seg<road,MX> SS;

int main() {
    setIO(); re(N,Q);
    FOR(i,1,N) {
        re(L[i],R[i]);
        // ps("??",L[i],R[i]);
        SS.upd(i);
    }
    // ps(SS.seg[4+MX][0]+SS.seg[3+MX][0]+SS.seg[2+MX][0]+SS.seg[1+MX][0]);
    /*exit(0);
    ps(SS.query(1,1,0),SS.query(1,2,0));
    auto z = road(0,5);
    ps(z,z.getTime(0), z.getTime(5), z.getPrice(0), z.getPrice(5));
    z = z+z;
    ps(z);*/
    F0R(i,Q) {
        int T; re(T);
        if (T == 1) {
            int P,S,E; re(P,S,E);
            L[P] = S, R[P] = E;
            SS.upd(P);
        } else {
            int A,B,C,D; re(A,B,C,D);
            road r;
            if (A <= C) {
                r = SS.query(A,C-1,0);
            } else {
                r = SS.query(C,A-1,1);
            }
            // ps("WHAT",r);
            // ps("WHAT",A,C-1,r);
            pl z = {r.getTime(B), r.getPrice(B)};
            z.s += max(0LL,z.f-D);
            ps(z.s);
        }
    }
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?), set tle
    * do smth instead of nothing and stay organized
*/

Compilation message

timeleap.cpp: In function 'void io::setIn(std::__cxx11::string)':
timeleap.cpp:117:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
timeleap.cpp: In function 'void io::setOut(std::__cxx11::string)':
timeleap.cpp:118:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 71 ms 66040 KB Output is correct
2 Correct 67 ms 66040 KB Output is correct
3 Correct 70 ms 66040 KB Output is correct
4 Correct 68 ms 66040 KB Output is correct
5 Correct 73 ms 66040 KB Output is correct
6 Correct 77 ms 66040 KB Output is correct
7 Correct 80 ms 66168 KB Output is correct
8 Correct 70 ms 66040 KB Output is correct
9 Correct 65 ms 66040 KB Output is correct
10 Correct 65 ms 66040 KB Output is correct
11 Correct 68 ms 66040 KB Output is correct
12 Correct 71 ms 66044 KB Output is correct
13 Correct 71 ms 66012 KB Output is correct
14 Correct 77 ms 66040 KB Output is correct
15 Correct 71 ms 66040 KB Output is correct
16 Correct 83 ms 66040 KB Output is correct
17 Correct 76 ms 66168 KB Output is correct
18 Correct 69 ms 66040 KB Output is correct
19 Correct 68 ms 66040 KB Output is correct
20 Correct 67 ms 66012 KB Output is correct
21 Correct 69 ms 66040 KB Output is correct
22 Correct 68 ms 66036 KB Output is correct
23 Correct 71 ms 66040 KB Output is correct
24 Correct 73 ms 66120 KB Output is correct
25 Correct 68 ms 66040 KB Output is correct
26 Correct 66 ms 66012 KB Output is correct
27 Correct 70 ms 66132 KB Output is correct
28 Correct 70 ms 66040 KB Output is correct
29 Correct 74 ms 66040 KB Output is correct
30 Correct 68 ms 66064 KB Output is correct
31 Correct 78 ms 66040 KB Output is correct
32 Correct 82 ms 66040 KB Output is correct
33 Correct 76 ms 66168 KB Output is correct
34 Correct 71 ms 66040 KB Output is correct
35 Correct 76 ms 66112 KB Output is correct
36 Correct 67 ms 66040 KB Output is correct
37 Correct 70 ms 66168 KB Output is correct
38 Correct 68 ms 66020 KB Output is correct
39 Correct 69 ms 66168 KB Output is correct
40 Correct 66 ms 66040 KB Output is correct
41 Correct 63 ms 66048 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 715 ms 78056 KB Output is correct
2 Correct 732 ms 77800 KB Output is correct
3 Correct 784 ms 77672 KB Output is correct
4 Correct 752 ms 77688 KB Output is correct
5 Correct 738 ms 77688 KB Output is correct
6 Correct 735 ms 77688 KB Output is correct
7 Correct 820 ms 77944 KB Output is correct
8 Correct 792 ms 78072 KB Output is correct
9 Correct 923 ms 77832 KB Output is correct
10 Correct 846 ms 77916 KB Output is correct
11 Correct 766 ms 77816 KB Output is correct
12 Correct 757 ms 77932 KB Output is correct
13 Correct 780 ms 77976 KB Output is correct
14 Correct 76 ms 66168 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 71 ms 66040 KB Output is correct
2 Correct 67 ms 66040 KB Output is correct
3 Correct 70 ms 66040 KB Output is correct
4 Correct 68 ms 66040 KB Output is correct
5 Correct 73 ms 66040 KB Output is correct
6 Correct 77 ms 66040 KB Output is correct
7 Correct 80 ms 66168 KB Output is correct
8 Correct 70 ms 66040 KB Output is correct
9 Correct 65 ms 66040 KB Output is correct
10 Correct 65 ms 66040 KB Output is correct
11 Correct 68 ms 66040 KB Output is correct
12 Correct 71 ms 66044 KB Output is correct
13 Correct 71 ms 66012 KB Output is correct
14 Correct 77 ms 66040 KB Output is correct
15 Correct 71 ms 66040 KB Output is correct
16 Correct 83 ms 66040 KB Output is correct
17 Correct 76 ms 66168 KB Output is correct
18 Correct 69 ms 66040 KB Output is correct
19 Correct 68 ms 66040 KB Output is correct
20 Correct 67 ms 66012 KB Output is correct
21 Correct 69 ms 66040 KB Output is correct
22 Correct 68 ms 66036 KB Output is correct
23 Correct 71 ms 66040 KB Output is correct
24 Correct 73 ms 66120 KB Output is correct
25 Correct 68 ms 66040 KB Output is correct
26 Correct 66 ms 66012 KB Output is correct
27 Correct 70 ms 66132 KB Output is correct
28 Correct 70 ms 66040 KB Output is correct
29 Correct 74 ms 66040 KB Output is correct
30 Correct 68 ms 66064 KB Output is correct
31 Correct 78 ms 66040 KB Output is correct
32 Correct 82 ms 66040 KB Output is correct
33 Correct 76 ms 66168 KB Output is correct
34 Correct 71 ms 66040 KB Output is correct
35 Correct 76 ms 66112 KB Output is correct
36 Correct 67 ms 66040 KB Output is correct
37 Correct 70 ms 66168 KB Output is correct
38 Correct 68 ms 66020 KB Output is correct
39 Correct 69 ms 66168 KB Output is correct
40 Correct 66 ms 66040 KB Output is correct
41 Correct 63 ms 66048 KB Output is correct
42 Correct 715 ms 78056 KB Output is correct
43 Correct 732 ms 77800 KB Output is correct
44 Correct 784 ms 77672 KB Output is correct
45 Correct 752 ms 77688 KB Output is correct
46 Correct 738 ms 77688 KB Output is correct
47 Correct 735 ms 77688 KB Output is correct
48 Correct 820 ms 77944 KB Output is correct
49 Correct 792 ms 78072 KB Output is correct
50 Correct 923 ms 77832 KB Output is correct
51 Correct 846 ms 77916 KB Output is correct
52 Correct 766 ms 77816 KB Output is correct
53 Correct 757 ms 77932 KB Output is correct
54 Correct 780 ms 77976 KB Output is correct
55 Correct 76 ms 66168 KB Output is correct
56 Correct 1059 ms 75628 KB Output is correct
57 Correct 915 ms 75384 KB Output is correct
58 Correct 974 ms 75672 KB Output is correct
59 Correct 842 ms 75768 KB Output is correct
60 Correct 866 ms 75512 KB Output is correct
61 Correct 947 ms 75772 KB Output is correct
62 Correct 783 ms 75640 KB Output is correct
63 Correct 978 ms 75812 KB Output is correct
64 Correct 788 ms 75768 KB Output is correct
65 Correct 849 ms 75612 KB Output is correct
66 Correct 845 ms 75640 KB Output is correct
67 Correct 812 ms 75684 KB Output is correct
68 Correct 914 ms 75512 KB Output is correct
69 Correct 949 ms 75912 KB Output is correct
70 Correct 810 ms 75528 KB Output is correct
71 Correct 811 ms 75384 KB Output is correct
72 Correct 1044 ms 75740 KB Output is correct
73 Correct 840 ms 75900 KB Output is correct
74 Correct 895 ms 75788 KB Output is correct
75 Correct 1051 ms 75868 KB Output is correct
76 Correct 847 ms 75932 KB Output is correct
77 Correct 69 ms 66040 KB Output is correct