// AM+DG
/*
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int, int> pi;
typedef pair<ll, ll> pll;
typedef vector<pi> vpi;
typedef vector<pll> vpll;
#define L(i, varmn, varmx) for(ll i = varmn; i < varmx; i++)
#define LR(i, varmx, varmn) for(ll i = varmx; i > varmn; i--)
#define LI(i, varmn, varmx) for(int i = varmn; i < varmx; i++)
#define LIR(i, varmx, varmn) for(int i = varmx; i > varmn; i--)
#define pb push_back
#include "doll.h"
struct pot_switch {
int id;
int x;
int y;
};
// void construct_switches(int base_switch_num, int num_to_remove, int p2, int offset, int size, vector<pot_switch>& switches_to_construct) {
// if(size == 2) {
// // Handle the special case here
// if(num_to_remove == 1) {
// switches_to_construct.pb({base_switch_num - offset, -1, (p2 << 1) + offset - ((p2 << 1) - 1)});
// } else {
// switches_to_construct.pb({base_switch_num - offset, p2 + offset - ((p2 << 1) - 1), (p2 << 1) + offset - ((p2 << 1) - 1)});
// }
// } /* (No need for this, we're making a perfect binary tree anyways) else if(size == 3) {
// // Handle the special case here
// if(num_to_remove == 2) {
// switches_to_construct.pb({base_switch_num - offset, -1, (p2 << 1) + offset - ((p2 << 1) - 1)});
// } else {
// switches_to_construct.pb({base_switch_num - offset, base_switch_num - (offset + p2), (p2 << 1) + offset - ((p2 << 1) - 1)});
// // Recurse towards the first child
// construct_switches(base_switch_num, num_to_remove, p2 << 1, offset + p2, size - (size >> 1), switches_to_construct);
// }
// }*/ else {
// if(num_to_remove < (size >> 1)) {
// // Recursive case
// switches_to_construct.pb({base_switch_num - offset, base_switch_num - (offset + p2), base_switch_num - (offset + (p2 << 1))});
// // Recurse left
// construct_switches(base_switch_num, num_to_remove, p2 << 1, offset + p2, size >> 1, switches_to_construct);
// // Recurse right
// construct_switches(base_switch_num, 0, p2 << 1, offset + (p2 << 1), size >> 1, switches_to_construct);
// } else {
// // Recursive case
// switches_to_construct.pb({base_switch_num - offset, -1, base_switch_num - (offset + (p2 << 1))});
// // Recurse right
// construct_switches(base_switch_num, num_to_remove - (size >> 1), p2 << 1, offset + (p2 << 1), size >> 1, switches_to_construct);
// }
// }
// }
const int TO_PROCESS_OFFSETTER = 1000000;
int construct_switches(int cur_switch_num, int num_to_remove, int p2, int offset, int size, vector<pot_switch>& switches_to_construct) {
if(size == 2) {
// Handle the special case here
// ! Oh btw, I added "TO_PROCESS_OFFSETTER" to indicate that the switch exit still needs to be processed, haha
// ! Otherwise, the algorithm might relabel some of the already processed exits and cause wrong motion, haha
if(num_to_remove == 1) {
switches_to_construct.pb({cur_switch_num, -1, TO_PROCESS_OFFSETTER + (p2 << 1) + offset - ((p2 << 1) - 1)});
} else {
switches_to_construct.pb({cur_switch_num, TO_PROCESS_OFFSETTER + p2 + offset - ((p2 << 1) - 1), TO_PROCESS_OFFSETTER + (p2 << 1) + offset - ((p2 << 1) - 1)});
}
return cur_switch_num - 1;
} /* (No need for this, we're making a perfect binary tree anyways) else if(size == 3) {
// Handle the special case here
if(num_to_remove == 2) {
switches_to_construct.pb({base_switch_num - offset, -1, (p2 << 1) + offset - ((p2 << 1) - 1)});
} else {
switches_to_construct.pb({base_switch_num - offset, base_switch_num - (offset + p2), (p2 << 1) + offset - ((p2 << 1) - 1)});
// Recurse towards the first child
construct_switches(base_switch_num, num_to_remove, p2 << 1, offset + p2, size - (size >> 1), switches_to_construct);
}
}*/ else {
if(num_to_remove < (size >> 1)) {
// Recursive case
pot_switch sw = {cur_switch_num, cur_switch_num - 1, -1};
// Recurse left
int next_switch_num = construct_switches(cur_switch_num - 1, num_to_remove, p2 << 1, offset + p2, size >> 1, switches_to_construct);
sw.y = next_switch_num;
// Recurse right
next_switch_num = construct_switches(next_switch_num, 0, p2 << 1, offset + (p2 << 1), size >> 1, switches_to_construct);
switches_to_construct.pb(sw);
return next_switch_num;
} else {
// Recursive case
pot_switch sw = {cur_switch_num, -1, cur_switch_num - 1};
// Recurse right
int next_switch = construct_switches(cur_switch_num - 1, num_to_remove - (size >> 1), p2 << 1, offset + (p2 << 1), size >> 1, switches_to_construct);
switches_to_construct.pb(sw);
return next_switch;
}
}
}
int ceillog2(int n) {
int p2 = 1;
while(p2 < n) {
p2 <<= 1;
}
return p2;
}
void create_circuit(int m, std::vector<int> a) {
a.pb(0); // Zero ni natte.. zero ni natte.. /ref
int n = a.size();
vi c(m + 1);
for (int i = 0; i <= m; ++i) {
c[i] = -1;
}
vi x;
vi y;
int actual_size = ceillog2(n);
int to_remove = actual_size - n;
vector<pot_switch> switches_to_construct;
construct_switches(-1, to_remove, 1, 0, actual_size, switches_to_construct);
priority_queue<pi, vector<pi>, greater<pi>> exits_to_renumber;
int num_switches = switches_to_construct.size();
LI(i, 0, num_switches) {
pot_switch sw = switches_to_construct[i];
if(sw.x >= 0) {
exits_to_renumber.push({sw.x, i});
}
if(sw.y >= 0) {
exits_to_renumber.push({sw.y, i});
}
}
int ptr = 0;
while(!exits_to_renumber.empty()) {
pi top_elem = exits_to_renumber.top();
int num = top_elem.first, i = top_elem.second;
exits_to_renumber.pop();
if(switches_to_construct[i].x == num) {
switches_to_construct[i].x = a[ptr];
} else {
switches_to_construct[i].y = a[ptr];
}
ptr++;
}
sort(switches_to_construct.begin(), switches_to_construct.end(), [](pot_switch s1, pot_switch s2){return s1.id > s2.id;});
LI(i, 0, (int)switches_to_construct.size()) {
// cout << switches_to_construct[i].id << " " << switches_to_construct[i].x << " " << switches_to_construct[i].y << endl;
x.pb(switches_to_construct[i].x);
y.pb(switches_to_construct[i].y);
}
answer(c, x, y);
return;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
29 ms |
5280 KB |
Output is correct |
3 |
Correct |
26 ms |
4800 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
6 ms |
1624 KB |
Output is correct |
6 |
Correct |
41 ms |
7180 KB |
Output is correct |
7 |
Correct |
0 ms |
344 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
29 ms |
5280 KB |
Output is correct |
3 |
Correct |
26 ms |
4800 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
6 ms |
1624 KB |
Output is correct |
6 |
Correct |
41 ms |
7180 KB |
Output is correct |
7 |
Correct |
0 ms |
344 KB |
Output is correct |
8 |
Correct |
52 ms |
8864 KB |
Output is correct |
9 |
Correct |
54 ms |
10308 KB |
Output is correct |
10 |
Correct |
79 ms |
12472 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
29 ms |
5280 KB |
Output is correct |
3 |
Correct |
26 ms |
4800 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
6 ms |
1624 KB |
Output is correct |
6 |
Correct |
41 ms |
7180 KB |
Output is correct |
7 |
Correct |
0 ms |
344 KB |
Output is correct |
8 |
Correct |
52 ms |
8864 KB |
Output is correct |
9 |
Correct |
54 ms |
10308 KB |
Output is correct |
10 |
Correct |
79 ms |
12472 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
0 ms |
348 KB |
Output is correct |
14 |
Correct |
80 ms |
11452 KB |
Output is correct |
15 |
Correct |
50 ms |
7756 KB |
Output is correct |
16 |
Correct |
76 ms |
11392 KB |
Output is correct |
17 |
Correct |
0 ms |
344 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Correct |
0 ms |
348 KB |
Output is correct |
20 |
Correct |
78 ms |
11616 KB |
Output is correct |
21 |
Correct |
0 ms |
348 KB |
Output is correct |
22 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
1 ms |
348 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
49 ms |
8312 KB |
Output is correct |
3 |
Correct |
48 ms |
9028 KB |
Output is correct |
4 |
Correct |
72 ms |
11432 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
49 ms |
8312 KB |
Output is correct |
3 |
Correct |
48 ms |
9028 KB |
Output is correct |
4 |
Correct |
72 ms |
11432 KB |
Output is correct |
5 |
Correct |
77 ms |
11304 KB |
Output is correct |
6 |
Correct |
78 ms |
11412 KB |
Output is correct |
7 |
Correct |
78 ms |
11196 KB |
Output is correct |
8 |
Correct |
79 ms |
11108 KB |
Output is correct |
9 |
Correct |
49 ms |
8784 KB |
Output is correct |
10 |
Correct |
76 ms |
11404 KB |
Output is correct |
11 |
Correct |
73 ms |
11688 KB |
Output is correct |
12 |
Correct |
47 ms |
8524 KB |
Output is correct |
13 |
Correct |
53 ms |
7492 KB |
Output is correct |
14 |
Correct |
50 ms |
7496 KB |
Output is correct |
15 |
Correct |
49 ms |
7496 KB |
Output is correct |
16 |
Correct |
2 ms |
604 KB |
Output is correct |
17 |
Correct |
47 ms |
7380 KB |
Output is correct |
18 |
Correct |
47 ms |
7488 KB |
Output is correct |
19 |
Correct |
48 ms |
9024 KB |
Output is correct |
20 |
Correct |
79 ms |
11200 KB |
Output is correct |
21 |
Correct |
95 ms |
11196 KB |
Output is correct |
22 |
Correct |
73 ms |
11196 KB |
Output is correct |