Submission #102119

# Submission time Handle Problem Language Result Execution time Memory
102119 2019-03-22T15:00:58 Z Benq Raspad (COI17_raspad) C++14
100 / 100
269 ms 93148 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 100001;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

template<class A, class B> A operator+=(A& l, const B& r) { return l = l+r; }
template<class A, class B> A operator-=(A& l, const B& r) { return l = l-r; }
template<class A, class B> A operator*=(A& l, const B& r) { return l = l*r; }
template<class A, class B> A operator/=(A& l, const B& r) { return l = l/r; }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; trav(a,x) pr(!fst?", ":"",a), fst = 0; 
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); } 
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modInt {
    T val;
    T mod = 0;
    // static const T mod = MOD;

    void normalize() {
        if (mod == 0) return;
        val %= mod; if (val < 0) val += mod;
    }
    modInt(T v = 0, T m = 0) : val(v), mod(m) { normalize(); }
    // modInt(T v = 0, T m = 0) : val(v) { normalize(); }

    explicit operator T() const { return val; }
    friend ostream& operator<<(ostream& os, const modInt& a) { return os << a.val; }
    friend bool operator==(const modInt& a, const modInt& b) { return a.val == b.val; }
    friend bool operator!=(const modInt& a, const modInt& b) { return !(a == b); }

    friend void check(modInt& a, modInt& b) { // make sure all operations are valid
        // comment out if mod is static const
        if (a.mod > 0 && b.mod > 0) { assert(a.mod == b.mod); return; }
        T mod = max(a.mod,b.mod); if (mod == 0) mod = MOD;
        if (a.mod != mod) { a.mod = mod; a.normalize(); }
        if (b.mod != mod) { b.mod = mod; b.normalize(); }
    }
    friend modInt operator+(modInt a, modInt b) {
        check(a,b); a.val += (T)b;
        if (a.val >= a.mod) a.val -= a.mod;
        return a;
    }
    friend modInt operator-(modInt a, modInt b) {
        check(a,b); a.val -= (T)b; 
        if (a.val < 0) a.val += a.mod; 
        return a;
    }
    friend modInt operator-(const modInt& a) { return modInt(0)-a; }

    friend modInt operator*(modInt a, modInt b) {
        check(a,b); a.val = (ll)a.val*(T)b%a.mod; return a;
    }
    friend modInt exp(modInt a, ll p) {
        modInt ans(1,a.mod);
        for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modInt inv(const modInt& a) {
        return {invGeneral(a.val,a.mod),a.mod};
        // return exp(b,b.mod-2) if prime
    }
    friend modInt operator/(modInt a, modInt b) { 
        check(a,b); return a*inv(b); 
    }
};

typedef modInt<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

int n,m, comp[MX][50], num;
string s[MX];
ll ans = 0;

template<int SZ> struct DSU {
    int par[SZ], sz[SZ];
    DSU() {
        F0R(i,SZ) par[i] = i, sz[i] = 1;
    }
    
    int get(int x) { // path compression
    	if (par[x] != x) par[x] = get(par[x]);
    	return par[x];
    }
    
    bool unite(int x, int y) { // union-by-rank
    	x = get(x), y = get(y);
    	if (x == y) return 0;
    	if (sz[x] < sz[y]) swap(x,y);
    	sz[x] += sz[y], par[y] = x;
    	return 1;
    }
};

DSU<5000001> D;
bool vis[MX][50][4];

int xd[4] = {0,1,0,-1}, yd[4] = {-1,0,1,0};

int dfs(int a, int b, int c) { // naively go through cycle
    int mn = MOD;
    while (!vis[a][b][c]) {
        vis[a][b][c] = 1; ckmin(mn,a);
        if (s[a+xd[c]][b+yd[c]] == '0') {
            c = (c+1)%4;
            continue;
        }
        int C = (c+3)%4;
        if (s[a+xd[c]+xd[C]][b+yd[c]+yd[C]] == '0') {
            a += xd[c], b += yd[c];
            continue;
        }
        a += xd[c]+xd[C], b += yd[c]+yd[C]; c = C;
    }
    return mn;
}

int main() {
    setIO(); re(n,m);
    F0R(i,n) {
        // F0R(j,m) s[i] += char('0'+(rand()%2));
        re(s[i]);
        for (int j = 0; j < m; ) {
            if (s[i][j] == '0') { j ++; continue; }
            num ++;
            while (j < m && s[i][j] == '1') comp[i][j++] = num;
            ans += (ll)(i+1)*(n-i);
        }
    }
    // ps(ans);
    F0R(i,n-1) {
        pi pre = {-1,-1};
        F0R(j,m) {
            pi cur = {comp[i][j],comp[i+1][j]};
            if (cur == pre) continue;
            pre = cur; if (!cur.f || !cur.s) continue;
            if (D.unite(cur.f,cur.s)) {
                ans -= (ll)(i+1)*(n-1-i);
            } else {
                // [2,2], [3,n-1]
                int mn = dfs(i+1,j,0);
                ans -= (ll)(i-mn)*(n-1-i);
                /*ps("WHAT",i,cur,dfs(cur.f-1,cur.f));
                exit(0);*/
            }
        }
		// cout << i << " " << ans << "\n";
    }
    ps(ans);
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?), set tle
    * do smth instead of nothing and stay organized
*/

Compilation message

raspad.cpp: In function 'void io::setIn(std::__cxx11::string)':
raspad.cpp:117:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
raspad.cpp: In function 'void io::setOut(std::__cxx11::string)':
raspad.cpp:118:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 42 ms 42616 KB Output is correct
2 Correct 37 ms 42616 KB Output is correct
3 Correct 44 ms 42608 KB Output is correct
4 Correct 44 ms 42616 KB Output is correct
5 Correct 43 ms 42616 KB Output is correct
6 Correct 43 ms 42744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 42616 KB Output is correct
2 Correct 37 ms 42616 KB Output is correct
3 Correct 44 ms 42608 KB Output is correct
4 Correct 44 ms 42616 KB Output is correct
5 Correct 43 ms 42616 KB Output is correct
6 Correct 43 ms 42744 KB Output is correct
7 Correct 45 ms 42880 KB Output is correct
8 Correct 39 ms 42744 KB Output is correct
9 Correct 39 ms 43000 KB Output is correct
10 Correct 39 ms 42872 KB Output is correct
11 Correct 40 ms 43000 KB Output is correct
12 Correct 41 ms 43008 KB Output is correct
13 Correct 38 ms 43040 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 59 ms 52364 KB Output is correct
2 Correct 79 ms 63088 KB Output is correct
3 Correct 114 ms 83400 KB Output is correct
4 Correct 65 ms 61688 KB Output is correct
5 Correct 51 ms 49272 KB Output is correct
6 Correct 89 ms 68984 KB Output is correct
7 Correct 108 ms 83368 KB Output is correct
8 Correct 102 ms 71928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 42616 KB Output is correct
2 Correct 37 ms 42616 KB Output is correct
3 Correct 44 ms 42608 KB Output is correct
4 Correct 44 ms 42616 KB Output is correct
5 Correct 43 ms 42616 KB Output is correct
6 Correct 43 ms 42744 KB Output is correct
7 Correct 45 ms 42880 KB Output is correct
8 Correct 39 ms 42744 KB Output is correct
9 Correct 39 ms 43000 KB Output is correct
10 Correct 39 ms 42872 KB Output is correct
11 Correct 40 ms 43000 KB Output is correct
12 Correct 41 ms 43008 KB Output is correct
13 Correct 38 ms 43040 KB Output is correct
14 Correct 59 ms 52364 KB Output is correct
15 Correct 79 ms 63088 KB Output is correct
16 Correct 114 ms 83400 KB Output is correct
17 Correct 65 ms 61688 KB Output is correct
18 Correct 51 ms 49272 KB Output is correct
19 Correct 89 ms 68984 KB Output is correct
20 Correct 108 ms 83368 KB Output is correct
21 Correct 102 ms 71928 KB Output is correct
22 Correct 154 ms 77180 KB Output is correct
23 Correct 269 ms 93096 KB Output is correct
24 Correct 224 ms 93148 KB Output is correct
25 Correct 182 ms 76144 KB Output is correct
26 Correct 136 ms 73632 KB Output is correct
27 Correct 166 ms 83496 KB Output is correct
28 Correct 216 ms 92124 KB Output is correct
29 Correct 217 ms 91656 KB Output is correct
30 Correct 126 ms 73424 KB Output is correct
31 Correct 141 ms 73464 KB Output is correct
32 Correct 159 ms 93148 KB Output is correct
33 Correct 185 ms 87884 KB Output is correct
34 Correct 174 ms 87956 KB Output is correct