Submission #1020619

# Submission time Handle Problem Language Result Execution time Memory
1020619 2024-07-12T07:45:07 Z pavement Soccer Stadium (IOI23_soccer) C++17
54 / 100
1856 ms 181152 KB
#include "soccer.h"
#include <bits/stdc++.h>
using namespace std;

#define mp make_pair
#define eb emplace_back

using ll = long long;
using ii = pair<int, int>;
using iiii = tuple<int, int, int, int>;

int clr[2005][2005], clu[2005][2005], cld[2005][2005];
ii clrp[2005][2005], clrs[2005][2005], par[4000005];
ll ans, dp[4000005];

vector<iiii> get_maximal_rects(const int &N, const vector<vector<int> > &F) {
	vector<iiii> cur_rects;
	for (int i = 0; i < N; i++) {
		for (int j = N - 1; j >= 0; j--) {
			if (F[i][j] == 1) {
				clr[i][j] = j;
			} else if (j + 1 < N) {
				clr[i][j] = clr[i][j + 1];
			} else {
				clr[i][j] = N;
			}
			if (F[i][j] == 1) {
				clu[i][j] = i;
			} else if (i > 0) {
				clu[i][j] = clu[i - 1][j];
			} else {
				clu[i][j] = -1;
			}
			if (F[i][j] == 1) {
				clrp[i][j] = mp(N, N);
			} else if (i > 0) {
				clrp[i][j] = min(clrp[i - 1][j], mp(clr[i][j], i));
			} else {
				clrp[i][j] = mp(clr[i][j], i);
			}
		}
	}
	for (int i = N - 1; i >= 0; i--) {
		for (int j = 0; j < N; j++) {
			if (F[i][j] == 1) {
				cld[i][j] = i;
			} else if (i + 1 < N) {
				cld[i][j] = cld[i + 1][j];
			} else {
				cld[i][j] = N;
			}
			if (F[i][j] == 1) {
				clrs[i][j] = mp(N, N);
			} else if (i + 1 < N) {
				clrs[i][j] = min(clrs[i + 1][j], mp(clr[i][j], i));
			} else {
				clrs[i][j] = mp(clr[i][j], i);
			}
		}
	}
	for (int i = 0; i < N; i++) {
		for (int j = 0; j < N; j++) {
			if (F[i][j] == 1 || (j != 0 && F[i][j - 1] == 0)) {
				continue;
			}
			int l1 = clu[i][j] + 1;
			int r1 = cld[i][j] - 1;
			int nj = j;
			while (l1 <= r1) {
				if (F[l1][nj] == 1 || cld[l1][nj] <= r1) {
					break;
				}
				int b1, g1;
				if (clu[l1][nj] + 1 == l1) {
					tie(b1, g1) = clrp[r1][nj];
				} else {
					tie(b1, g1) = clrs[l1][nj];
				}
				cur_rects.eb(l1, j, r1, b1 - 1);
				// obstacle at (g1, b1)
				if (b1 == N) {
					break;
				}
				if (i < g1) {
					r1 = g1 - 1;
				} else if (i > g1) {
					l1 = g1 + 1;
				} else {
					break;
				}
				nj = b1;
			}
		}
	}
	return cur_rects;
}
 
vector<vector<int> > rotate(const int &N, const vector<vector<int> > &F) {
	vector<vector<int> > G(N, vector<int>(N, 0));
	for (int col = N - 1; col >= 0; col--) {
		for (int row = 0; row < N; row++) {
			G[row][col] = F[N - col - 1][row];
		}
	}
	return G;
}
 
ii unpack(const int &N, const int &x) {
	int r = x / N, c = x % N;
	return mp(r, c);
}
 
int biggest_stadium(int N, vector<vector<int> > F) {
	vector<iiii> all_rects;
	vector<vector<int> > H(N, vector<int>(N, 0));
	for (int i = 0; i < N; i++) {
		for (int j = 0; j < N; j++) {
			H[i][j] = i * N + j;
		}
	}
	for (int rep = 0; rep < 2; rep++) {
		auto cur_rects = get_maximal_rects(N, F);
		for (auto [r1, c1, r2, c2] : cur_rects) {
			auto [nr1, nc1] = unpack(N, H[r1][c1]);
			auto [nr2, nc2] = unpack(N, H[r2][c2]);
			all_rects.eb(min(nr1, nr2), min(nc1, nc2), max(nr1, nr2), max(nc1, nc2));
		}
		F = rotate(N, F);
		H = rotate(N, H);
	}
	sort(all_rects.begin(), all_rects.end());
	all_rects.erase(unique(all_rects.begin(), all_rects.end()), all_rects.end());
	sort(all_rects.begin(), all_rects.end(), [](const auto &lhs, const auto &rhs) {
		auto [r11, c11, r12, c12] = lhs;
		auto [r21, c21, r22, c22] = rhs;
		return c12 - c11 > c22 - c21;
	});
	for (int i = 0; i < (int)all_rects.size(); i++) {
		auto [r11, c11, r12, c12] = all_rects[i];
		for (int j = 0; j < i; j++) {
			auto [r21, c21, r22, c22] = all_rects[j];
			if (c21 <= c11 && c12 <= c22 && r11 <= r21 && r22 <= r12) {
				dp[i] = max(dp[i], dp[j] + (ll)((c22 - c21 + 1) - (c12 - c11 + 1)) * (r22 - r21 + 1));
			}
		}
		ans = max(ans, dp[i] + (ll)(r12 - r11 + 1) * (c12 - c11 + 1));
	}
	return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB ok
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 0 ms 604 KB ok
4 Correct 0 ms 604 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 3 ms 2808 KB ok
8 Correct 36 ms 21636 KB ok
9 Correct 375 ms 181152 KB ok
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 1 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 344 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 348 KB ok
9 Correct 0 ms 344 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 352 KB ok
13 Correct 0 ms 348 KB ok
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 0 ms 348 KB ok
4 Correct 1 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 344 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 348 KB ok
9 Correct 0 ms 348 KB ok
10 Correct 0 ms 344 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 352 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 1 ms 604 KB ok
16 Correct 0 ms 604 KB ok
17 Correct 0 ms 604 KB ok
18 Correct 1 ms 604 KB ok
19 Correct 0 ms 604 KB ok
20 Correct 1 ms 600 KB ok
21 Correct 0 ms 440 KB ok
22 Correct 1 ms 600 KB ok
23 Correct 0 ms 604 KB ok
24 Correct 0 ms 604 KB ok
25 Correct 1 ms 604 KB ok
26 Correct 0 ms 604 KB ok
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 0 ms 348 KB ok
4 Correct 0 ms 604 KB ok
5 Correct 0 ms 604 KB ok
6 Correct 1 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 344 KB ok
9 Correct 0 ms 348 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 344 KB ok
13 Correct 0 ms 348 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 0 ms 352 KB ok
16 Correct 0 ms 348 KB ok
17 Correct 1 ms 604 KB ok
18 Correct 0 ms 604 KB ok
19 Correct 0 ms 604 KB ok
20 Correct 1 ms 604 KB ok
21 Correct 0 ms 604 KB ok
22 Correct 1 ms 600 KB ok
23 Correct 0 ms 440 KB ok
24 Correct 1 ms 600 KB ok
25 Correct 0 ms 604 KB ok
26 Correct 0 ms 604 KB ok
27 Correct 1 ms 604 KB ok
28 Correct 0 ms 604 KB ok
29 Correct 1 ms 604 KB ok
30 Correct 1 ms 1116 KB ok
31 Correct 1 ms 1116 KB ok
32 Correct 1 ms 1116 KB ok
33 Correct 1 ms 1116 KB ok
34 Correct 1 ms 1112 KB ok
35 Correct 1 ms 1116 KB ok
36 Correct 1 ms 1116 KB ok
37 Correct 1 ms 1116 KB ok
38 Correct 1 ms 960 KB ok
39 Correct 1 ms 1116 KB ok
40 Correct 1 ms 1116 KB ok
41 Correct 1 ms 1116 KB ok
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 0 ms 348 KB ok
4 Correct 0 ms 604 KB ok
5 Correct 0 ms 604 KB ok
6 Correct 1 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 344 KB ok
9 Correct 0 ms 348 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 344 KB ok
13 Correct 0 ms 348 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 0 ms 352 KB ok
16 Correct 0 ms 348 KB ok
17 Correct 1 ms 604 KB ok
18 Correct 0 ms 604 KB ok
19 Correct 0 ms 604 KB ok
20 Correct 1 ms 604 KB ok
21 Correct 0 ms 604 KB ok
22 Correct 1 ms 600 KB ok
23 Correct 0 ms 440 KB ok
24 Correct 1 ms 600 KB ok
25 Correct 0 ms 604 KB ok
26 Correct 0 ms 604 KB ok
27 Correct 1 ms 604 KB ok
28 Correct 0 ms 604 KB ok
29 Correct 1 ms 604 KB ok
30 Correct 1 ms 1116 KB ok
31 Correct 1 ms 1116 KB ok
32 Correct 1 ms 1116 KB ok
33 Correct 1 ms 1116 KB ok
34 Correct 1 ms 1112 KB ok
35 Correct 1 ms 1116 KB ok
36 Correct 1 ms 1116 KB ok
37 Correct 1 ms 1116 KB ok
38 Correct 1 ms 960 KB ok
39 Correct 1 ms 1116 KB ok
40 Correct 1 ms 1116 KB ok
41 Correct 1 ms 1116 KB ok
42 Partially correct 1176 ms 24996 KB partial
43 Correct 1856 ms 28476 KB ok
44 Partially correct 102 ms 22448 KB partial
45 Partially correct 62 ms 22228 KB partial
46 Partially correct 498 ms 23484 KB partial
47 Correct 26 ms 21840 KB ok
48 Incorrect 26 ms 21840 KB wrong
49 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 0 ms 348 KB ok
4 Correct 0 ms 604 KB ok
5 Correct 0 ms 604 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 3 ms 2808 KB ok
9 Correct 36 ms 21636 KB ok
10 Correct 375 ms 181152 KB ok
11 Correct 1 ms 348 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 344 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 0 ms 348 KB ok
16 Correct 0 ms 348 KB ok
17 Correct 0 ms 344 KB ok
18 Correct 0 ms 348 KB ok
19 Correct 0 ms 348 KB ok
20 Correct 0 ms 352 KB ok
21 Correct 0 ms 348 KB ok
22 Correct 1 ms 604 KB ok
23 Correct 0 ms 604 KB ok
24 Correct 0 ms 604 KB ok
25 Correct 1 ms 604 KB ok
26 Correct 0 ms 604 KB ok
27 Correct 1 ms 600 KB ok
28 Correct 0 ms 440 KB ok
29 Correct 1 ms 600 KB ok
30 Correct 0 ms 604 KB ok
31 Correct 0 ms 604 KB ok
32 Correct 1 ms 604 KB ok
33 Correct 0 ms 604 KB ok
34 Correct 1 ms 604 KB ok
35 Correct 1 ms 1116 KB ok
36 Correct 1 ms 1116 KB ok
37 Correct 1 ms 1116 KB ok
38 Correct 1 ms 1116 KB ok
39 Correct 1 ms 1112 KB ok
40 Correct 1 ms 1116 KB ok
41 Correct 1 ms 1116 KB ok
42 Correct 1 ms 1116 KB ok
43 Correct 1 ms 960 KB ok
44 Correct 1 ms 1116 KB ok
45 Correct 1 ms 1116 KB ok
46 Correct 1 ms 1116 KB ok
47 Partially correct 1176 ms 24996 KB partial
48 Correct 1856 ms 28476 KB ok
49 Partially correct 102 ms 22448 KB partial
50 Partially correct 62 ms 22228 KB partial
51 Partially correct 498 ms 23484 KB partial
52 Correct 26 ms 21840 KB ok
53 Incorrect 26 ms 21840 KB wrong
54 Halted 0 ms 0 KB -