#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize
const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 100001;
const ld PI = 4*atan((ld)1);
template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }
template<class A, class B> A operator+=(A& l, const B& r) { return l = l+r; }
template<class A, class B> A operator-=(A& l, const B& r) { return l = l-r; }
template<class A, class B> A operator*=(A& l, const B& r) { return l = l*r; }
template<class A, class B> A operator/=(A& l, const B& r) { return l = l/r; }
namespace input {
template<class T> void re(complex<T>& x);
template<class T1, class T2> void re(pair<T1,T2>& p);
template<class T> void re(vector<T>& a);
template<class T, size_t SZ> void re(array<T,SZ>& a);
template<class T> void re(T& x) { cin >> x; }
void re(double& x) { string t; re(t); x = stod(t); }
void re(ld& x) { string t; re(t); x = stold(t); }
template<class Arg, class... Args> void re(Arg& first, Args&... rest) {
re(first); re(rest...);
}
template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}
using namespace input;
namespace output {
template<class T1, class T2> void pr(const pair<T1,T2>& x);
template<class T, size_t SZ> void pr(const array<T,SZ>& x);
template<class T> void pr(const vector<T>& x);
template<class T> void pr(const set<T>& x);
template<class T1, class T2> void pr(const map<T1,T2>& x);
template<class T> void pr(const T& x) { cout << x; }
template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) {
pr(first); pr(rest...);
}
template<class T1, class T2> void pr(const pair<T1,T2>& x) {
pr("{",x.f,", ",x.s,"}");
}
template<class T> void prContain(const T& x) {
pr("{");
bool fst = 1; trav(a,x) pr(!fst?", ":"",a), fst = 0;
pr("}");
}
template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
template<class T> void pr(const vector<T>& x) { prContain(x); }
template<class T> void pr(const set<T>& x) { prContain(x); }
template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
void ps() { pr("\n"); }
template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) {
pr(first," "); ps(rest...); // print w/ spaces
}
}
using namespace output;
namespace io {
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void setIO(string s = "") {
ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
}
using namespace io;
template<class T> T invGeneral(T a, T b) {
a %= b; if (a == 0) return b == 1 ? 0 : -1;
T x = invGeneral(b,a);
return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}
template<class T> struct modInt {
T val;
T mod = 0;
// static const T mod = MOD;
void normalize() {
if (mod == 0) return;
val %= mod; if (val < 0) val += mod;
}
modInt(T v = 0, T m = 0) : val(v), mod(m) { normalize(); }
// modInt(T v = 0, T m = 0) : val(v) { normalize(); }
explicit operator T() const { return val; }
friend ostream& operator<<(ostream& os, const modInt& a) { return os << a.val; }
friend bool operator==(const modInt& a, const modInt& b) { return a.val == b.val; }
friend bool operator!=(const modInt& a, const modInt& b) { return !(a == b); }
friend void check(modInt& a, modInt& b) { // make sure all operations are valid
// comment out if mod is static const
if (a.mod > 0 && b.mod > 0) { assert(a.mod == b.mod); return; }
T mod = max(a.mod,b.mod); if (mod == 0) mod = MOD;
if (a.mod != mod) { a.mod = mod; a.normalize(); }
if (b.mod != mod) { b.mod = mod; b.normalize(); }
}
friend modInt operator+(modInt a, modInt b) {
check(a,b); a.val += (T)b;
if (a.val >= a.mod) a.val -= a.mod;
return a;
}
friend modInt operator-(modInt a, modInt b) {
check(a,b); a.val -= (T)b;
if (a.val < 0) a.val += a.mod;
return a;
}
friend modInt operator-(const modInt& a) { return modInt(0)-a; }
friend modInt operator*(modInt a, modInt b) {
check(a,b); a.val = (ll)a.val*(T)b%a.mod; return a;
}
friend modInt exp(modInt a, ll p) {
modInt ans(1,a.mod);
for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans;
}
friend modInt inv(const modInt& a) {
return {invGeneral(a.val,a.mod),a.mod};
// return exp(b,b.mod-2) if prime
}
friend modInt operator/(modInt a, modInt b) {
check(a,b); return a*inv(b);
}
};
typedef modInt<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
int K, M, F[10001], T;
vi divi[1000001];
array<int,20> dist[1000001];
map<vi,array<int,20>> m;
bitset<1000001> done;
vi L;
vpi lucky;
void search(vi ori, vi cur, int ind, int numDivi, array<int,20>& cans) {
if (ind == sz(ori)) {
if (numDivi == 1) return;
vi CUR; trav(t,cur) if (t) CUR.pb(t);
sort(all(CUR));
// ps("HUH",ori,CUR);
FOR(i,1,20) ckmin(cans[i],m[CUR][i-1]+F[numDivi]);
return;
}
cur.pb(-1);
F0R(i,ori[ind]+1) {
cur[ind] = i;
search(ori,cur,ind+1,numDivi*(ori[ind]+1-i),cans);
}
}
array<int,20> inf;
array<int,20> getDist(int x) {
if (!done[x]) {
done[x] = 1;
dist[x] = m[divi[x]];
}
return dist[x];
}
array<int,20> conv(array<int,20> a, array<int,20> b) {
auto c = inf;
F0R(i,20) F0Rd(j,20-i) ckmin(c[i+j],a[i]+b[j]);
return c;
}
void init() {
setIO(); re(K); FOR(i,1,K+1) re(F[i]);
re(M); L.resz(M); re(L,T);
lucky.resz(T); re(lucky);
FOR(i,2,1000001) if (!sz(divi[i])) {
for (int j = i; j < 1000001; j += i) {
int cur = 0;
int J = j; while (J % i == 0) { cur ++; J /= i; }
divi[j].pb(cur);
}
}
F0R(i,20) inf[i] = MOD;
FOR(i,1,1000001) {
sort(all(divi[i]));
m[divi[i]] = {};
}
auto t = inf; t[0] = 0; m[divi[0]] = t;
trav(t,m) if (sz(t.f)) {
t.s = inf;
search(t.f,{},0,1,t.s);
}
// trav(t,m) ps(t);
}
bool Q;
struct Line {
mutable ll k, m, p; // slope, y-intercept, last optimal x
bool operator<(const Line& o) const {
return Q ? p < o.p : k < o.k;
}
};
struct LineContainer : multiset<Line> {
const ll inf = LLONG_MAX;
ll div(ll a, ll b) { // floored division
if (b < 0) a *= -1, b *= -1;
if (a >= 0) return a/b;
return -((-a+b-1)/b);
}
// updates x->p, determines if y is unneeded
bool isect(iterator x, iterator y) {
if (y == end()) { x->p = inf; return 0; }
if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
else x->p = div(y->m - x->m, x->k - y->k);
return x->p >= y->p;
}
void add(ll k, ll m) {
k *= -1, m *= -1;
auto z = insert({k, m, 0}), y = z++, x = y;
while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y));
}
ll query(ll x) {
assert(!empty());
Q = 1; auto l = *lb({0,0,x}); Q = 0;
return -(l.k * x + l.m);
}
};
int smallAns[20];
int main() {
init();
int Q; re(Q);
F0R(i,Q) {
int A,B; re(A,B);
F0R(j,20) smallAns[j] = MOD;
if (A % B == 0) {
auto dist = getDist(A/B);
F0R(j,20) if (dist[j] != MOD) ckmin(smallAns[j],dist[j]);
}
LineContainer LL;
// no lucky numbers
trav(t,lucky) if (A % t.f == 0 && t.f % B == 0) {
auto dist = conv(getDist(A/t.f),getDist(t.f/B));
int minAdd = MOD;
F0R(j,20) if (dist[j] != MOD) {
FOR(k,j,20) ckmin(smallAns[k],t.s*(k-j)+dist[j]);
ckmin(minAdd,dist[j]-t.s*j);
}
if (minAdd != MOD) LL.add(t.s,minAdd);
// lucky.s*(x-k)+dist[k]
}
ll ret = 0;
trav(t,L) {
if (t < 20) {
if (smallAns[t] == MOD) ret --;
else ret += smallAns[t];
} else {
if (sz(LL)) ret += LL.query(t);
else ret --;
}
}
ps(ret);
}
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?), set tle
* do smth instead of nothing and stay organized
*/
Compilation message
gauss.cpp: In function 'void io::setIn(std::__cxx11::string)':
gauss.cpp:117:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~
gauss.cpp: In function 'void io::setOut(std::__cxx11::string)':
gauss.cpp:118:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
790 ms |
55928 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
730 ms |
56096 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
715 ms |
55896 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
744 ms |
55928 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1046 ms |
103752 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
850 ms |
108792 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
827 ms |
100800 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1098 ms |
104204 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1176 ms |
101720 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1030 ms |
100428 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |