Submission #1018110

# Submission time Handle Problem Language Result Execution time Memory
1018110 2024-07-09T14:31:08 Z cadmiumsky Radio Towers (IOI22_towers) C++17
58 / 100
1501 ms 529216 KB
#include "towers.h"
 
#include <vector>
#include <bits/stdc++.h>
#define all(x) (x).begin(),(x).end()
using namespace std;
 
using ll = long long;
using ld = long double;
 
#define int ll
#define sz(x) ((int)(x).size())
 
using pii = pair<int,int>;
using tii = tuple<int,int,int>;
 
const int nmax = 2e5 + 5;
int v[nmax];
 
namespace DSU {
   int dsu[nmax], nxt[nmax];
   int mxR[nmax];
 
   void init(int l, int r) {
      for(int i = l; i <= r; i++) dsu[i] = i, nxt[i] = i + 1;
      return;
   }
   int f(int x) { return x == dsu[x]? x : dsu[x] = f(dsu[x]); }
   void unite(int x, int y) {
      x = f(x);
      y = f(y);
      if(x == y) return;
      if(x > y) swap(x, y);
      dsu[y] = x;
      mxR[x] = max(mxR[x], mxR[y]);
      nxt[x] = nxt[y];
      return;
   }
   int coef(int i, const vector<int>& p) {
      i = f(i);
      return mxR[i] - max(v[p[i]], v[p[nxt[i]]]);
   }
}
 
int timeout[nmax];
int dir[nmax];
 
void initglobals(signed L, signed R) {
   
   ++L;
   ++R;
   
   vector<int> p;
   for(int i = L; i <= R; i++) {
      if((i == L  || v[i] < v[i - 1]) && (i == R || v[i] < v[i + 1])) p.emplace_back(i), timeout[i] = 1e9 + 5;
      else timeout[i] = 0;
   }
   
   DSU::init(0, sz(p));
   
   set<pii> heap;
   
   set<int> indemnizatii;
   for(int i = 0; i < sz(p) - 1; i++) {
      indemnizatii.emplace(i);
      indemnizatii.emplace(i + 1);
      int mx = v[p[i] + 1];
      for(int j = p[i] + 2; j < p[i + 1]; j++)
         mx = max(mx, v[j]);
      DSU::mxR[i] = mx;
      heap.emplace(mx - max(v[p[i]], v[p[i + 1]]), i);
   }
   
   auto get = [&](int p_) { return pii{DSU::coef(p_, p), p_}; };
      
   while(!heap.empty()) {
      auto [C, i] = *heap.begin();
      heap.erase(heap.begin());
      
      i = DSU::f(i);
      int urm = DSU::nxt[i];
      if(i != *indemnizatii.begin()) {
         int ant = DSU::f(i - 1);
         heap.erase(heap.find(get(ant)));
      }
      if(urm != *indemnizatii.rbegin()) 
         heap.erase(heap.find(get(urm)));
      
      if(v[p[i]] < v[p[urm]]) {
         timeout[p[urm]] = C;
         dir[p[urm]] = p[i];
         DSU::unite(i, urm);
         indemnizatii.erase(urm);
         if(i != *indemnizatii.begin()) {
            int ant = DSU::f(i - 1);
            heap.insert(get(ant));
         }
         if(i != *indemnizatii.rbegin())
            heap.insert(get(i));
         
      }
      else {
         timeout[p[i]] = C;
         dir[p[i]] = p[urm];
         if(i != *indemnizatii.begin()) {
            int ant = DSU::f(i - 1);
            DSU::unite(ant, i);
            heap.insert(get(ant));
         }
         if(urm != *indemnizatii.rbegin())
            heap.insert(get(urm));
         indemnizatii.erase(i);
      }  
   }
}
 
 
template<typename T>
struct AINT {
   struct Node {
      Node *l, *r;
      T inner;
   };
   Node mem[nmax * 36];
   int cnt = 0;
   using ns = Node*;
   
   int n;
   ns root, nil;
   int filled = 0;
   void init(int n_) {
      n = n_;
      nil = newnode(0, 0, T());
      nil -> l = nil;
      nil -> r = nil;
      root = nil;
      root = walk([&](T& inner, int cl, int cr) {
         if(cl != cr) return 1;
         inner = T();
         return 0;
      });
   }
   
   ns newnode(ns L, ns R, T val) {
      mem[cnt++] = (Node{L, R, val});
      return mem + cnt - 1;
   }
   ns newnode() {
      return newnode(nil, nil, T());
   }
   
   template<class CB> ns walk(CB&& cb) { filled ++; return root = walk(cb, 1, n); }
   template<class CB> ns walk(CB&& cb, int l, int r) { return root = walk(cb, l, r, root, 1, n); }
   template<class CB> ns walk(CB&& cb, int l, int r, ns node, int cl, int cr) { 
      if(r < cl || cr < l) return node;
      auto a = node -> inner;
      if(l <= cl && cr <= r && !cb(node -> inner, cl, cr)) { auto rv = newnode(node -> l, node -> r, node -> inner); node -> inner = a;  return rv; }
      int mid = (cl + cr) >> 1;
      auto herenow = newnode();
      herenow -> l = walk(cb, l, r, node -> l, cl, mid);
      herenow -> r = walk(cb, l, r, node -> r, mid + 1, cr);
      //cerr << cl << ' ' << cr << "\t" << herenow -> inner.val << '\t' << herenow -> l -> inner.val << '\t' << herenow -> r -> inner.val << '\n';
      herenow -> inner.pull(herenow -> l -> inner, herenow -> r -> inner);
      return herenow;
   }
   
   
   template<class CB> void const_walk(CB&& cb, ns start) const { return const_walk(cb, start, 1, n); }
   template<class CB> void const_walk(CB&& cb, ns start, int l, int r) const { return const_walk(cb, l, r, start, 1, n); }
   template<class CB> void const_walk(CB&& cb, int l, int r, ns node, int cl, int cr) const { 
      if(r < cl || cr < l) return;
      if(l <= cl && cr <= r && !cb(node -> inner, cl, cr)) return;
      int mid = (cl + cr) >> 1;
      const_walk(cb, l, r, node -> l, cl, mid);
      const_walk(cb, l, r, node -> r, mid + 1, cr);
      return;
   }
};
 
struct Sum {
   int val;
   Sum(int a = 0): val(a) {;}
   void pull(const Sum& L, const Sum& R) { val = L.val + R.val; }
};
 
struct mnidx {
   int val;
   mnidx(int a = 0): val(a) {;}
   void pull(const mnidx& L, const mnidx& R) { val = v[L.val] < v[R.val]? L.val : R.val; }
};
 
struct mxval {
   int val;
   mxval(int a = 0): val(a) {;}
   void pull(const mxval& L, const mxval& R) { val = max(L.val, R.val); }
};
 
map<int, AINT<Sum>::ns> sumroot;
map<int, AINT<mnidx>::ns> raiseroot, fallroot;
 
AINT<Sum> sum_aint;
AINT<mnidx> dir_aint;
AINT<mxval> max_aint;
 
void init(signed N, std::vector<signed> H) {
   //cerr << N << ' ' << sz(H) << '\n';
   v[0] = 1e9 + 2;
   for(int i = 0; i < N; i++) v[i + 1] = H[i]; 
   initglobals(0, N - 1);
   max_aint.init(N);
   max_aint.walk([&](auto &a, int cl, int cr) { if(cl != cr) return 1; a.val = v[cl]; return 0; });
   
 
   vector<int> idx(N); iota(all(idx), 1);
   sum_aint.init(N);
   sort(all(idx), [&](int a, int b) { return timeout[a] > timeout[b]; });
   for(auto x : idx)
      sumroot[timeout[x]] = sum_aint.walk([&](auto& a, int cl, int cr) { a.val = 1; return 0;}, x, x);
      //cerr << timeout[x] << '\t' << sum_aint.root -> inner.val << '\n';
      
   dir_aint.init(N);
   sort(all(idx), [&](int a, int b) { return dir[a] < dir[b]; });
   raiseroot[0] = dir_aint.root;
   for(auto x : idx) 
      raiseroot[dir[x]] = dir_aint.walk([&](auto& a, int cl, int cr) { a.val = cl * (timeout[cl] != 0); return 0; }, x, x); 
   for(int i = 1; i <= N; i++) if(raiseroot.count(i) == 0) raiseroot[i] = raiseroot[i - 1];
   
   dir_aint.init(N);
   sort(all(idx), [&](int a, int b) { return dir[a] > dir[b]; });
   fallroot[N + 1] = dir_aint.root;
   for(auto x : idx) 
      fallroot[dir[x]] = dir_aint.walk([&](auto& a, int cl, int cr) { a.val = cl * (timeout[cl] != 0); return 0; }, x, x); 
   for(int i = N; i > 0; i--) if(fallroot.count(i) == 0) fallroot[i] = fallroot[i + 1];
   
   
   return;
}
 
int query_max(int l, int r) { 
   int mx = 0;
   max_aint.const_walk([&](auto& a, int cl, int cr) { mx = max(mx, a.val); return 0;}, max_aint.root, l, r);
   return mx;
}
 
signed max_towers(signed L, signed R, signed D) {
   ++L, ++R;
   if(sumroot.lower_bound(D) == sumroot.end()) return 1;
   auto forsum = sumroot.lower_bound(D) -> second;
   
   
   int alltogether = 0;
   sum_aint.const_walk([&](auto a, int cl, int cr) { alltogether += a.val; return 0; }, forsum, L, R);
   if(alltogether == 0) {
      int mx = query_max(L, R);
      return mx - max(v[L], v[R]) >= D? 2 : 1;
   }
   
   int l = L, r;
   sum_aint.const_walk([&](auto &a, int cl, int cr) { 
      if(l < cl) return 0; 
      if(a.val == 0) { l = cr + 1; return 0; } 
      if(cl == cr) { l = cl; return 0; } 
      return 1; }, forsum, L, R);
   
   int rez = alltogether;
   
   if(L < l) {
      int mn = L;
      dir_aint.const_walk([&](mnidx& a, int cl, int cr) { if(v[mn] > v[a.val]) mn = a.val; return 0;}, raiseroot[L - 1], L + 1, l - 1);
      int mx = query_max(mn + 1, l);
      
      if(mx - max(v[l], v[mn]) >= D) rez++;
   }
   int limit = alltogether - 1;
   
   r = L;
   sum_aint.const_walk([&](auto &a, int cl, int cr) { 
      if(r < cl) return 0; 
      if(a.val <= limit) { limit -= a.val; r = cr + 1; return 0; } 
      if(cl == cr) { r = cl; return 0; } 
      return 1; }, forsum, L, R);
   
   if(r < R) {
      int mn = R;
      dir_aint.const_walk([&](mnidx& a, int cl, int cr) { if(v[mn] > v[a.val]) mn = a.val; return 0;}, fallroot[R + 1], r + 1, R - 1);
      int mx = query_max(r + 1, mn - 1);
      if(mx - max(v[r], v[mn]) >= D) rez++;
   }
   
   //cerr << L << ' ' << l << ' ' << r << ' ' << R << '\n';
   
   return rez;
}
#undef int
# Verdict Execution time Memory Grader output
1 Correct 575 ms 518388 KB Output is correct
2 Correct 976 ms 524880 KB Output is correct
3 Correct 935 ms 524860 KB Output is correct
4 Correct 972 ms 524880 KB Output is correct
5 Correct 1044 ms 524872 KB Output is correct
6 Correct 927 ms 524880 KB Output is correct
7 Correct 956 ms 524880 KB Output is correct
8 Correct 145 ms 509268 KB Output is correct
9 Correct 146 ms 509728 KB Output is correct
10 Correct 157 ms 509516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 509520 KB Output is correct
2 Correct 152 ms 509716 KB Output is correct
3 Correct 152 ms 509860 KB Output is correct
4 Correct 146 ms 509776 KB Output is correct
5 Correct 153 ms 509656 KB Output is correct
6 Correct 148 ms 509776 KB Output is correct
7 Correct 155 ms 509624 KB Output is correct
8 Correct 146 ms 509520 KB Output is correct
9 Correct 153 ms 509520 KB Output is correct
10 Correct 157 ms 509520 KB Output is correct
11 Correct 153 ms 509516 KB Output is correct
12 Correct 183 ms 509516 KB Output is correct
13 Correct 160 ms 509776 KB Output is correct
14 Correct 153 ms 509720 KB Output is correct
15 Correct 180 ms 509708 KB Output is correct
16 Correct 154 ms 509756 KB Output is correct
17 Correct 159 ms 509776 KB Output is correct
18 Correct 151 ms 509520 KB Output is correct
19 Correct 155 ms 509520 KB Output is correct
20 Correct 164 ms 509880 KB Output is correct
21 Correct 148 ms 509752 KB Output is correct
22 Correct 157 ms 509776 KB Output is correct
23 Correct 152 ms 509520 KB Output is correct
24 Correct 162 ms 509520 KB Output is correct
25 Correct 157 ms 509520 KB Output is correct
26 Correct 155 ms 509776 KB Output is correct
27 Correct 162 ms 509580 KB Output is correct
28 Correct 155 ms 509776 KB Output is correct
29 Correct 156 ms 509844 KB Output is correct
30 Correct 162 ms 509776 KB Output is correct
31 Correct 157 ms 509768 KB Output is correct
32 Correct 152 ms 509520 KB Output is correct
33 Correct 153 ms 509520 KB Output is correct
34 Correct 162 ms 509608 KB Output is correct
35 Correct 151 ms 509756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 509520 KB Output is correct
2 Correct 152 ms 509716 KB Output is correct
3 Correct 152 ms 509860 KB Output is correct
4 Correct 146 ms 509776 KB Output is correct
5 Correct 153 ms 509656 KB Output is correct
6 Correct 148 ms 509776 KB Output is correct
7 Correct 155 ms 509624 KB Output is correct
8 Correct 146 ms 509520 KB Output is correct
9 Correct 153 ms 509520 KB Output is correct
10 Correct 157 ms 509520 KB Output is correct
11 Correct 153 ms 509516 KB Output is correct
12 Correct 183 ms 509516 KB Output is correct
13 Correct 160 ms 509776 KB Output is correct
14 Correct 153 ms 509720 KB Output is correct
15 Correct 180 ms 509708 KB Output is correct
16 Correct 154 ms 509756 KB Output is correct
17 Correct 159 ms 509776 KB Output is correct
18 Correct 151 ms 509520 KB Output is correct
19 Correct 155 ms 509520 KB Output is correct
20 Correct 164 ms 509880 KB Output is correct
21 Correct 148 ms 509752 KB Output is correct
22 Correct 157 ms 509776 KB Output is correct
23 Correct 152 ms 509520 KB Output is correct
24 Correct 162 ms 509520 KB Output is correct
25 Correct 157 ms 509520 KB Output is correct
26 Correct 155 ms 509776 KB Output is correct
27 Correct 162 ms 509580 KB Output is correct
28 Correct 155 ms 509776 KB Output is correct
29 Correct 156 ms 509844 KB Output is correct
30 Correct 162 ms 509776 KB Output is correct
31 Correct 157 ms 509768 KB Output is correct
32 Correct 152 ms 509520 KB Output is correct
33 Correct 153 ms 509520 KB Output is correct
34 Correct 162 ms 509608 KB Output is correct
35 Correct 151 ms 509756 KB Output is correct
36 Correct 264 ms 521248 KB Output is correct
37 Correct 341 ms 527552 KB Output is correct
38 Correct 326 ms 527552 KB Output is correct
39 Correct 378 ms 529136 KB Output is correct
40 Correct 398 ms 529028 KB Output is correct
41 Correct 387 ms 529216 KB Output is correct
42 Correct 363 ms 529216 KB Output is correct
43 Correct 259 ms 524880 KB Output is correct
44 Correct 274 ms 524880 KB Output is correct
45 Correct 277 ms 524876 KB Output is correct
46 Correct 265 ms 524880 KB Output is correct
47 Correct 333 ms 527556 KB Output is correct
48 Correct 374 ms 529212 KB Output is correct
49 Correct 381 ms 529032 KB Output is correct
50 Correct 283 ms 524880 KB Output is correct
51 Correct 278 ms 524872 KB Output is correct
52 Correct 340 ms 527548 KB Output is correct
53 Correct 372 ms 529108 KB Output is correct
54 Correct 369 ms 529100 KB Output is correct
55 Correct 324 ms 524696 KB Output is correct
56 Correct 264 ms 524804 KB Output is correct
57 Correct 334 ms 527056 KB Output is correct
58 Correct 342 ms 527792 KB Output is correct
59 Correct 332 ms 527552 KB Output is correct
60 Correct 375 ms 529128 KB Output is correct
61 Correct 360 ms 529064 KB Output is correct
62 Correct 387 ms 529108 KB Output is correct
63 Correct 360 ms 529024 KB Output is correct
64 Correct 268 ms 524880 KB Output is correct
65 Correct 264 ms 524880 KB Output is correct
66 Correct 263 ms 524876 KB Output is correct
67 Correct 261 ms 524880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1116 ms 527612 KB Output is correct
2 Correct 1308 ms 527552 KB Output is correct
3 Correct 1340 ms 527872 KB Output is correct
4 Correct 1294 ms 529016 KB Output is correct
5 Correct 1319 ms 529024 KB Output is correct
6 Correct 1355 ms 529144 KB Output is correct
7 Correct 1298 ms 529212 KB Output is correct
8 Correct 940 ms 524804 KB Output is correct
9 Correct 949 ms 524880 KB Output is correct
10 Correct 1221 ms 524876 KB Output is correct
11 Correct 1206 ms 524900 KB Output is correct
12 Correct 985 ms 524692 KB Output is correct
13 Correct 1033 ms 524880 KB Output is correct
14 Correct 147 ms 509264 KB Output is correct
15 Correct 149 ms 509600 KB Output is correct
16 Correct 146 ms 509520 KB Output is correct
17 Correct 320 ms 527808 KB Output is correct
18 Correct 368 ms 529036 KB Output is correct
19 Correct 380 ms 529212 KB Output is correct
20 Correct 262 ms 524892 KB Output is correct
21 Correct 259 ms 524916 KB Output is correct
22 Correct 331 ms 527588 KB Output is correct
23 Correct 369 ms 529212 KB Output is correct
24 Correct 363 ms 529216 KB Output is correct
25 Correct 259 ms 524880 KB Output is correct
26 Correct 260 ms 524880 KB Output is correct
27 Correct 149 ms 509576 KB Output is correct
28 Correct 151 ms 509640 KB Output is correct
29 Correct 182 ms 509640 KB Output is correct
30 Correct 148 ms 509528 KB Output is correct
31 Correct 146 ms 509536 KB Output is correct
32 Correct 153 ms 509648 KB Output is correct
33 Correct 148 ms 509776 KB Output is correct
34 Correct 147 ms 509776 KB Output is correct
35 Correct 196 ms 509500 KB Output is correct
36 Correct 154 ms 509612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 402 ms 513616 KB Output is correct
2 Correct 1052 ms 527568 KB Output is correct
3 Correct 1089 ms 527740 KB Output is correct
4 Correct 1151 ms 529180 KB Output is correct
5 Correct 1202 ms 529024 KB Output is correct
6 Correct 1181 ms 529188 KB Output is correct
7 Correct 1149 ms 529120 KB Output is correct
8 Correct 992 ms 524936 KB Output is correct
9 Correct 1000 ms 524880 KB Output is correct
10 Correct 1000 ms 524768 KB Output is correct
11 Correct 1008 ms 524692 KB Output is correct
12 Correct 327 ms 527740 KB Output is correct
13 Correct 365 ms 529068 KB Output is correct
14 Correct 411 ms 528976 KB Output is correct
15 Correct 304 ms 524884 KB Output is correct
16 Correct 274 ms 525056 KB Output is correct
17 Correct 330 ms 527056 KB Output is correct
18 Correct 350 ms 527728 KB Output is correct
19 Correct 339 ms 527552 KB Output is correct
20 Correct 379 ms 529024 KB Output is correct
21 Correct 380 ms 529216 KB Output is correct
22 Correct 384 ms 529164 KB Output is correct
23 Correct 371 ms 529212 KB Output is correct
24 Correct 259 ms 524908 KB Output is correct
25 Correct 259 ms 524876 KB Output is correct
26 Correct 293 ms 524884 KB Output is correct
27 Correct 273 ms 524880 KB Output is correct
28 Correct 158 ms 509720 KB Output is correct
29 Correct 155 ms 509776 KB Output is correct
30 Correct 152 ms 509776 KB Output is correct
31 Correct 190 ms 509520 KB Output is correct
32 Correct 152 ms 509552 KB Output is correct
33 Correct 156 ms 509520 KB Output is correct
34 Correct 155 ms 509704 KB Output is correct
35 Correct 158 ms 509804 KB Output is correct
36 Correct 156 ms 509780 KB Output is correct
37 Correct 157 ms 509776 KB Output is correct
38 Correct 157 ms 509776 KB Output is correct
39 Correct 164 ms 509776 KB Output is correct
40 Correct 149 ms 509684 KB Output is correct
41 Correct 156 ms 509520 KB Output is correct
42 Correct 153 ms 509520 KB Output is correct
43 Correct 150 ms 509696 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 509520 KB Output is correct
2 Correct 152 ms 509716 KB Output is correct
3 Correct 152 ms 509860 KB Output is correct
4 Correct 146 ms 509776 KB Output is correct
5 Correct 153 ms 509656 KB Output is correct
6 Correct 148 ms 509776 KB Output is correct
7 Correct 155 ms 509624 KB Output is correct
8 Correct 146 ms 509520 KB Output is correct
9 Correct 153 ms 509520 KB Output is correct
10 Correct 157 ms 509520 KB Output is correct
11 Correct 153 ms 509516 KB Output is correct
12 Correct 183 ms 509516 KB Output is correct
13 Correct 160 ms 509776 KB Output is correct
14 Correct 153 ms 509720 KB Output is correct
15 Correct 180 ms 509708 KB Output is correct
16 Correct 154 ms 509756 KB Output is correct
17 Correct 159 ms 509776 KB Output is correct
18 Correct 151 ms 509520 KB Output is correct
19 Correct 155 ms 509520 KB Output is correct
20 Correct 164 ms 509880 KB Output is correct
21 Correct 148 ms 509752 KB Output is correct
22 Correct 157 ms 509776 KB Output is correct
23 Correct 152 ms 509520 KB Output is correct
24 Correct 162 ms 509520 KB Output is correct
25 Correct 157 ms 509520 KB Output is correct
26 Correct 155 ms 509776 KB Output is correct
27 Correct 162 ms 509580 KB Output is correct
28 Correct 155 ms 509776 KB Output is correct
29 Correct 156 ms 509844 KB Output is correct
30 Correct 162 ms 509776 KB Output is correct
31 Correct 157 ms 509768 KB Output is correct
32 Correct 152 ms 509520 KB Output is correct
33 Correct 153 ms 509520 KB Output is correct
34 Correct 162 ms 509608 KB Output is correct
35 Correct 151 ms 509756 KB Output is correct
36 Correct 264 ms 521248 KB Output is correct
37 Correct 341 ms 527552 KB Output is correct
38 Correct 326 ms 527552 KB Output is correct
39 Correct 378 ms 529136 KB Output is correct
40 Correct 398 ms 529028 KB Output is correct
41 Correct 387 ms 529216 KB Output is correct
42 Correct 363 ms 529216 KB Output is correct
43 Correct 259 ms 524880 KB Output is correct
44 Correct 274 ms 524880 KB Output is correct
45 Correct 277 ms 524876 KB Output is correct
46 Correct 265 ms 524880 KB Output is correct
47 Correct 333 ms 527556 KB Output is correct
48 Correct 374 ms 529212 KB Output is correct
49 Correct 381 ms 529032 KB Output is correct
50 Correct 283 ms 524880 KB Output is correct
51 Correct 278 ms 524872 KB Output is correct
52 Correct 340 ms 527548 KB Output is correct
53 Correct 372 ms 529108 KB Output is correct
54 Correct 369 ms 529100 KB Output is correct
55 Correct 324 ms 524696 KB Output is correct
56 Correct 264 ms 524804 KB Output is correct
57 Correct 334 ms 527056 KB Output is correct
58 Correct 342 ms 527792 KB Output is correct
59 Correct 332 ms 527552 KB Output is correct
60 Correct 375 ms 529128 KB Output is correct
61 Correct 360 ms 529064 KB Output is correct
62 Correct 387 ms 529108 KB Output is correct
63 Correct 360 ms 529024 KB Output is correct
64 Correct 268 ms 524880 KB Output is correct
65 Correct 264 ms 524880 KB Output is correct
66 Correct 263 ms 524876 KB Output is correct
67 Correct 261 ms 524880 KB Output is correct
68 Correct 1116 ms 527612 KB Output is correct
69 Correct 1308 ms 527552 KB Output is correct
70 Correct 1340 ms 527872 KB Output is correct
71 Correct 1294 ms 529016 KB Output is correct
72 Correct 1319 ms 529024 KB Output is correct
73 Correct 1355 ms 529144 KB Output is correct
74 Correct 1298 ms 529212 KB Output is correct
75 Correct 940 ms 524804 KB Output is correct
76 Correct 949 ms 524880 KB Output is correct
77 Correct 1221 ms 524876 KB Output is correct
78 Correct 1206 ms 524900 KB Output is correct
79 Correct 985 ms 524692 KB Output is correct
80 Correct 1033 ms 524880 KB Output is correct
81 Correct 147 ms 509264 KB Output is correct
82 Correct 149 ms 509600 KB Output is correct
83 Correct 146 ms 509520 KB Output is correct
84 Correct 320 ms 527808 KB Output is correct
85 Correct 368 ms 529036 KB Output is correct
86 Correct 380 ms 529212 KB Output is correct
87 Correct 262 ms 524892 KB Output is correct
88 Correct 259 ms 524916 KB Output is correct
89 Correct 331 ms 527588 KB Output is correct
90 Correct 369 ms 529212 KB Output is correct
91 Correct 363 ms 529216 KB Output is correct
92 Correct 259 ms 524880 KB Output is correct
93 Correct 260 ms 524880 KB Output is correct
94 Correct 149 ms 509576 KB Output is correct
95 Correct 151 ms 509640 KB Output is correct
96 Correct 182 ms 509640 KB Output is correct
97 Correct 148 ms 509528 KB Output is correct
98 Correct 146 ms 509536 KB Output is correct
99 Correct 153 ms 509648 KB Output is correct
100 Correct 148 ms 509776 KB Output is correct
101 Correct 147 ms 509776 KB Output is correct
102 Correct 196 ms 509500 KB Output is correct
103 Correct 154 ms 509612 KB Output is correct
104 Correct 1129 ms 525676 KB Output is correct
105 Correct 1229 ms 527736 KB Output is correct
106 Correct 1256 ms 527580 KB Output is correct
107 Correct 1378 ms 528988 KB Output is correct
108 Incorrect 1501 ms 529012 KB 19976th lines differ - on the 1st token, expected: '2', found: '1'
109 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 575 ms 518388 KB Output is correct
2 Correct 976 ms 524880 KB Output is correct
3 Correct 935 ms 524860 KB Output is correct
4 Correct 972 ms 524880 KB Output is correct
5 Correct 1044 ms 524872 KB Output is correct
6 Correct 927 ms 524880 KB Output is correct
7 Correct 956 ms 524880 KB Output is correct
8 Correct 145 ms 509268 KB Output is correct
9 Correct 146 ms 509728 KB Output is correct
10 Correct 157 ms 509516 KB Output is correct
11 Correct 149 ms 509520 KB Output is correct
12 Correct 152 ms 509716 KB Output is correct
13 Correct 152 ms 509860 KB Output is correct
14 Correct 146 ms 509776 KB Output is correct
15 Correct 153 ms 509656 KB Output is correct
16 Correct 148 ms 509776 KB Output is correct
17 Correct 155 ms 509624 KB Output is correct
18 Correct 146 ms 509520 KB Output is correct
19 Correct 153 ms 509520 KB Output is correct
20 Correct 157 ms 509520 KB Output is correct
21 Correct 153 ms 509516 KB Output is correct
22 Correct 183 ms 509516 KB Output is correct
23 Correct 160 ms 509776 KB Output is correct
24 Correct 153 ms 509720 KB Output is correct
25 Correct 180 ms 509708 KB Output is correct
26 Correct 154 ms 509756 KB Output is correct
27 Correct 159 ms 509776 KB Output is correct
28 Correct 151 ms 509520 KB Output is correct
29 Correct 155 ms 509520 KB Output is correct
30 Correct 164 ms 509880 KB Output is correct
31 Correct 148 ms 509752 KB Output is correct
32 Correct 157 ms 509776 KB Output is correct
33 Correct 152 ms 509520 KB Output is correct
34 Correct 162 ms 509520 KB Output is correct
35 Correct 157 ms 509520 KB Output is correct
36 Correct 155 ms 509776 KB Output is correct
37 Correct 162 ms 509580 KB Output is correct
38 Correct 155 ms 509776 KB Output is correct
39 Correct 156 ms 509844 KB Output is correct
40 Correct 162 ms 509776 KB Output is correct
41 Correct 157 ms 509768 KB Output is correct
42 Correct 152 ms 509520 KB Output is correct
43 Correct 153 ms 509520 KB Output is correct
44 Correct 162 ms 509608 KB Output is correct
45 Correct 151 ms 509756 KB Output is correct
46 Correct 264 ms 521248 KB Output is correct
47 Correct 341 ms 527552 KB Output is correct
48 Correct 326 ms 527552 KB Output is correct
49 Correct 378 ms 529136 KB Output is correct
50 Correct 398 ms 529028 KB Output is correct
51 Correct 387 ms 529216 KB Output is correct
52 Correct 363 ms 529216 KB Output is correct
53 Correct 259 ms 524880 KB Output is correct
54 Correct 274 ms 524880 KB Output is correct
55 Correct 277 ms 524876 KB Output is correct
56 Correct 265 ms 524880 KB Output is correct
57 Correct 333 ms 527556 KB Output is correct
58 Correct 374 ms 529212 KB Output is correct
59 Correct 381 ms 529032 KB Output is correct
60 Correct 283 ms 524880 KB Output is correct
61 Correct 278 ms 524872 KB Output is correct
62 Correct 340 ms 527548 KB Output is correct
63 Correct 372 ms 529108 KB Output is correct
64 Correct 369 ms 529100 KB Output is correct
65 Correct 324 ms 524696 KB Output is correct
66 Correct 264 ms 524804 KB Output is correct
67 Correct 334 ms 527056 KB Output is correct
68 Correct 342 ms 527792 KB Output is correct
69 Correct 332 ms 527552 KB Output is correct
70 Correct 375 ms 529128 KB Output is correct
71 Correct 360 ms 529064 KB Output is correct
72 Correct 387 ms 529108 KB Output is correct
73 Correct 360 ms 529024 KB Output is correct
74 Correct 268 ms 524880 KB Output is correct
75 Correct 264 ms 524880 KB Output is correct
76 Correct 263 ms 524876 KB Output is correct
77 Correct 261 ms 524880 KB Output is correct
78 Correct 1116 ms 527612 KB Output is correct
79 Correct 1308 ms 527552 KB Output is correct
80 Correct 1340 ms 527872 KB Output is correct
81 Correct 1294 ms 529016 KB Output is correct
82 Correct 1319 ms 529024 KB Output is correct
83 Correct 1355 ms 529144 KB Output is correct
84 Correct 1298 ms 529212 KB Output is correct
85 Correct 940 ms 524804 KB Output is correct
86 Correct 949 ms 524880 KB Output is correct
87 Correct 1221 ms 524876 KB Output is correct
88 Correct 1206 ms 524900 KB Output is correct
89 Correct 985 ms 524692 KB Output is correct
90 Correct 1033 ms 524880 KB Output is correct
91 Correct 147 ms 509264 KB Output is correct
92 Correct 149 ms 509600 KB Output is correct
93 Correct 146 ms 509520 KB Output is correct
94 Correct 320 ms 527808 KB Output is correct
95 Correct 368 ms 529036 KB Output is correct
96 Correct 380 ms 529212 KB Output is correct
97 Correct 262 ms 524892 KB Output is correct
98 Correct 259 ms 524916 KB Output is correct
99 Correct 331 ms 527588 KB Output is correct
100 Correct 369 ms 529212 KB Output is correct
101 Correct 363 ms 529216 KB Output is correct
102 Correct 259 ms 524880 KB Output is correct
103 Correct 260 ms 524880 KB Output is correct
104 Correct 149 ms 509576 KB Output is correct
105 Correct 151 ms 509640 KB Output is correct
106 Correct 182 ms 509640 KB Output is correct
107 Correct 148 ms 509528 KB Output is correct
108 Correct 146 ms 509536 KB Output is correct
109 Correct 153 ms 509648 KB Output is correct
110 Correct 148 ms 509776 KB Output is correct
111 Correct 147 ms 509776 KB Output is correct
112 Correct 196 ms 509500 KB Output is correct
113 Correct 154 ms 509612 KB Output is correct
114 Correct 402 ms 513616 KB Output is correct
115 Correct 1052 ms 527568 KB Output is correct
116 Correct 1089 ms 527740 KB Output is correct
117 Correct 1151 ms 529180 KB Output is correct
118 Correct 1202 ms 529024 KB Output is correct
119 Correct 1181 ms 529188 KB Output is correct
120 Correct 1149 ms 529120 KB Output is correct
121 Correct 992 ms 524936 KB Output is correct
122 Correct 1000 ms 524880 KB Output is correct
123 Correct 1000 ms 524768 KB Output is correct
124 Correct 1008 ms 524692 KB Output is correct
125 Correct 327 ms 527740 KB Output is correct
126 Correct 365 ms 529068 KB Output is correct
127 Correct 411 ms 528976 KB Output is correct
128 Correct 304 ms 524884 KB Output is correct
129 Correct 274 ms 525056 KB Output is correct
130 Correct 330 ms 527056 KB Output is correct
131 Correct 350 ms 527728 KB Output is correct
132 Correct 339 ms 527552 KB Output is correct
133 Correct 379 ms 529024 KB Output is correct
134 Correct 380 ms 529216 KB Output is correct
135 Correct 384 ms 529164 KB Output is correct
136 Correct 371 ms 529212 KB Output is correct
137 Correct 259 ms 524908 KB Output is correct
138 Correct 259 ms 524876 KB Output is correct
139 Correct 293 ms 524884 KB Output is correct
140 Correct 273 ms 524880 KB Output is correct
141 Correct 158 ms 509720 KB Output is correct
142 Correct 155 ms 509776 KB Output is correct
143 Correct 152 ms 509776 KB Output is correct
144 Correct 190 ms 509520 KB Output is correct
145 Correct 152 ms 509552 KB Output is correct
146 Correct 156 ms 509520 KB Output is correct
147 Correct 155 ms 509704 KB Output is correct
148 Correct 158 ms 509804 KB Output is correct
149 Correct 156 ms 509780 KB Output is correct
150 Correct 157 ms 509776 KB Output is correct
151 Correct 157 ms 509776 KB Output is correct
152 Correct 164 ms 509776 KB Output is correct
153 Correct 149 ms 509684 KB Output is correct
154 Correct 156 ms 509520 KB Output is correct
155 Correct 153 ms 509520 KB Output is correct
156 Correct 150 ms 509696 KB Output is correct
157 Correct 1129 ms 525676 KB Output is correct
158 Correct 1229 ms 527736 KB Output is correct
159 Correct 1256 ms 527580 KB Output is correct
160 Correct 1378 ms 528988 KB Output is correct
161 Incorrect 1501 ms 529012 KB 19976th lines differ - on the 1st token, expected: '2', found: '1'
162 Halted 0 ms 0 KB -