Submission #1017900

# Submission time Handle Problem Language Result Execution time Memory
1017900 2024-07-09T11:13:59 Z stefanopulos Sličnost (COI23_slicnost) C++17
50 / 100
169 ms 53568 KB
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bits/stdc++.h>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ldb;
 
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ldb,ldb> pdd;
 
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define fb(i,b,a) for(int i = b; i >= a; i--)
#define trav(a,x) for(auto& a : x)
 
#define sz(a) (int)(a).size()
#define fi first
#define se second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
// os.order_of_key(k) the number of elements in the os less than k
// *os.find_by_order(k)  print the k-th smallest number in os(0-based)
 
const int mod = 1000000007;
const int inf = 1e9 + 5;
const int mxN = 100005; 
 
int n, k, q;
int A[mxN];
int B[mxN];
 
int poz[mxN];
 
int L[mxN];
int R[mxN];
 
int idx = 0;
int ls[250 * mxN], rs[250 * mxN], root[250 * mxN];
int mx[250 * mxN], sum[250 * mxN], cnt[250 * mxN];
void build(int& v, int tl, int tr){
    v = ++idx;
    if(tl == tr){
        mx[v] = sum[v] = 0;
        cnt[v] = 1;
        return;
    }
    int mid = (tl + tr) / 2;
    build(ls[v], tl, mid); build(rs[v], mid + 1, tr);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);
}

void update(int& v, int rv, int tl, int tr, int pos, int val){
    v = ++idx; ls[v] = ls[rv]; rs[v] = rs[rv]; mx[v] = mx[rv]; sum[v] = sum[rv]; cnt[v] = cnt[rv];
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], ls[rv], tl, mid, pos, val);
    else update(rs[v], rs[rv], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

void update(int v, int tl, int tr, int pos, int val){
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], tl, mid, pos, val);
    else update(rs[v], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

struct SegTree{
    ll bor[4 * mxN][2];
    void update(int v, int tl, int tr, int pos, int val, ll cnt){
        if(tl == tr){
            bor[v][0] = val;
            bor[v][1] = cnt;
            return;
        }
        int mid = (tl + tr) / 2;
        if(pos <= mid)update(v * 2, tl, mid, pos, val, cnt);
        else update(v * 2 + 1, mid + 1, tr, pos, val, cnt);
        bor[v][0] = max(bor[v * 2][0], bor[v * 2 + 1][0]);
        bor[v][1] = (bor[v][0] == bor[v * 2][0] ? bor[v * 2][1] : 0) + (bor[v][0] == bor[v * 2 + 1][0] ? bor[v * 2 + 1][1] : 0);
    }
}drvo;

void calc(){

    idx = 0;
    build(root[k],1,n - k + 1);
    ff(i,1,k){
        int l = L[poz[A[i]]];
        int r = R[poz[A[i]]];
        update(root[k],root[k],1,n - k + 1,l,1);
        if(r < n - k + 1)update(root[k],1,n - k + 1,r + 1,-1);
    }
    
    drvo.update(1,1,n - k + 1,1,mx[root[k]],cnt[root[k]]);
    ff(i,k + 1,n){
        int l1 = L[poz[A[i - k]]];
        int r1 = R[poz[A[i - k]]];
        update(root[i],root[i - 1],1,n - k + 1,l1,-1);
        if(r1 < n - k + 1)update(root[i],1,n - k + 1,r1 + 1,1);
 
        int l2 = L[poz[A[i]]];
        int r2 = R[poz[A[i]]];
        update(root[i],1,n - k + 1,l2,1);
        if(r2 < n - k + 1)update(root[i],1,n - k + 1,r2 + 1,-1);

        drvo.update(1,1,n - k + 1,i - k + 1,mx[root[i]],cnt[root[i]]);

    }
 
}
 
int main(){
    cin.tie(0)->sync_with_stdio(0);
 
    cin >> n >> k >> q;
    ff(i,1,n)cin >> A[i];
    ff(i,1,n)cin >> B[i], poz[B[i]] = i;
 
    ff(i,1,n){
        L[i] = max(1, i - k + 1);
        R[i] = min(i, n - k + 1);
    }
 
    calc();
 
    int najv = drvo.bor[1][0]; ll br = drvo.bor[1][1];
    cout << najv << " " << br << '\n';
    while(q--){
        int t;
        cin >> t;

        if(t - k + 1 >= 1){
            int x = t;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t]]];
            int r1 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t + 1]]];
            int r2 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }
 
        if(t + k <= n){
            int x = t + k;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t + 1]]];
            int r1 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t]]];
            int r2 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }

        swap(A[t], A[t + 1]);

        najv = drvo.bor[1][0]; br = drvo.bor[1][1];
        cout << najv << " " << br << '\n';
 
    }
 
    return 0;
}
/*
 
4 3 0
2 4 1 3
1 2 3 4


5 3 1
1 4 3 2 5
4 5 1 2 3
3


 
// probati bojenje sahovski
*/
 
 
 
 
 
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14680 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 1 ms 14820 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 1 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 2 ms 14684 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 2 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14680 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 1 ms 14820 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 1 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 2 ms 14684 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 2 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19036 KB Output is correct
17 Correct 6 ms 19044 KB Output is correct
18 Correct 1 ms 10584 KB Output is correct
19 Correct 4 ms 16988 KB Output is correct
20 Correct 8 ms 19012 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16984 KB Output is correct
26 Correct 6 ms 16916 KB Output is correct
27 Correct 9 ms 19032 KB Output is correct
28 Correct 6 ms 16988 KB Output is correct
29 Correct 4 ms 16732 KB Output is correct
30 Correct 3 ms 16888 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14680 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 1 ms 14820 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 1 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 2 ms 14684 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 2 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19036 KB Output is correct
17 Correct 6 ms 19044 KB Output is correct
18 Correct 1 ms 10584 KB Output is correct
19 Correct 4 ms 16988 KB Output is correct
20 Correct 8 ms 19012 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16984 KB Output is correct
26 Correct 6 ms 16916 KB Output is correct
27 Correct 9 ms 19032 KB Output is correct
28 Correct 6 ms 16988 KB Output is correct
29 Correct 4 ms 16732 KB Output is correct
30 Correct 3 ms 16888 KB Output is correct
31 Correct 118 ms 52812 KB Output is correct
32 Correct 122 ms 52524 KB Output is correct
33 Correct 17 ms 13404 KB Output is correct
34 Correct 93 ms 47184 KB Output is correct
35 Correct 169 ms 53568 KB Output is correct
36 Correct 83 ms 51792 KB Output is correct
37 Correct 38 ms 39252 KB Output is correct
38 Correct 152 ms 51792 KB Output is correct
39 Correct 99 ms 53332 KB Output is correct
40 Correct 109 ms 46896 KB Output is correct
41 Correct 117 ms 51312 KB Output is correct
42 Correct 160 ms 51572 KB Output is correct
43 Correct 100 ms 46676 KB Output is correct
44 Correct 74 ms 46880 KB Output is correct
45 Correct 40 ms 39004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14680 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 1 ms 14820 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 1 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 2 ms 14684 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 2 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Incorrect 2 ms 14684 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14680 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 1 ms 14820 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 1 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 2 ms 14684 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 2 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19036 KB Output is correct
17 Correct 6 ms 19044 KB Output is correct
18 Correct 1 ms 10584 KB Output is correct
19 Correct 4 ms 16988 KB Output is correct
20 Correct 8 ms 19012 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16984 KB Output is correct
26 Correct 6 ms 16916 KB Output is correct
27 Correct 9 ms 19032 KB Output is correct
28 Correct 6 ms 16988 KB Output is correct
29 Correct 4 ms 16732 KB Output is correct
30 Correct 3 ms 16888 KB Output is correct
31 Incorrect 2 ms 14684 KB Output isn't correct
32 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14680 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 1 ms 14820 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 1 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 2 ms 14684 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 2 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19036 KB Output is correct
17 Correct 6 ms 19044 KB Output is correct
18 Correct 1 ms 10584 KB Output is correct
19 Correct 4 ms 16988 KB Output is correct
20 Correct 8 ms 19012 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16984 KB Output is correct
26 Correct 6 ms 16916 KB Output is correct
27 Correct 9 ms 19032 KB Output is correct
28 Correct 6 ms 16988 KB Output is correct
29 Correct 4 ms 16732 KB Output is correct
30 Correct 3 ms 16888 KB Output is correct
31 Correct 118 ms 52812 KB Output is correct
32 Correct 122 ms 52524 KB Output is correct
33 Correct 17 ms 13404 KB Output is correct
34 Correct 93 ms 47184 KB Output is correct
35 Correct 169 ms 53568 KB Output is correct
36 Correct 83 ms 51792 KB Output is correct
37 Correct 38 ms 39252 KB Output is correct
38 Correct 152 ms 51792 KB Output is correct
39 Correct 99 ms 53332 KB Output is correct
40 Correct 109 ms 46896 KB Output is correct
41 Correct 117 ms 51312 KB Output is correct
42 Correct 160 ms 51572 KB Output is correct
43 Correct 100 ms 46676 KB Output is correct
44 Correct 74 ms 46880 KB Output is correct
45 Correct 40 ms 39004 KB Output is correct
46 Incorrect 2 ms 14684 KB Output isn't correct
47 Halted 0 ms 0 KB -