답안 #1013219

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1013219 2024-07-03T10:09:25 Z boris_mihov 식물 비교 (IOI20_plants) C++17
100 / 100
1159 ms 116472 KB
#include "plants.h"
#include <algorithm>
#include <iostream>
#include <numeric>
#include <cassert>
#include <vector>
#include <map>

typedef long long llong;
const int MAXN = 200000 + 10;
const int MAXLOG = 18;
const int INF  = 2e9;

int n, k;
struct SegmentTree
{
    struct Node
    {
        int min;
        int idx;
        int lazy;

        Node()
        {
            min = INF;
            idx = -1;
            lazy = 0;
        }

        friend Node operator + (const Node &left, const Node &right)
        {
            if (left.min < right.min)
            {
                return left;
            } else
            {
                return right;
            }
        }
    };

    Node tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].min = vals[l];
            tree[node].idx = l;
            return;
        }

        int mid = l + r >> 1;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node] = tree[2*node] + tree[2*node + 1];
    }

    void push(int node, int l, int r)
    {
        if (tree[node].lazy == 0)
        {
            return;
        }

        tree[node].min += tree[node].lazy;
        if (l < r)
        {
            tree[2*node].lazy += tree[node].lazy;
            tree[2*node + 1].lazy += tree[node].lazy;
        }

        tree[node].lazy = 0;
    }

    void update(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        push(node, l, r);
        if (queryR < l || r < queryL)
        {
            return;
        }

        if (queryL <= l && r <= queryR)
        {
            tree[node].lazy = queryVal;
            push(node, l, r);
            return;
        }

        int mid = l + r >> 1;
        update(l, mid, 2*node, queryL, queryR, queryVal);
        update(mid + 1, r, 2*node + 1, queryL, queryR, queryVal);
        tree[node] = tree[2*node] + tree[2*node + 1];
    }
    
    Node query(int l, int r, int node, int queryL, int queryR)
    {
        push(node, l, r);
        if (queryL <= l && r <= queryR)
        {
            return tree[node];
        }

        Node result;
        int mid = l + r >> 1;
        if (queryL <= mid) result = result + query(l, mid, 2*node, queryL, queryR);
        if (mid + 1 <= queryR) result = result + query(mid + 1, r, 2*node + 1, queryL, queryR);
        return result;
    }

    void build(int r[])
    {
        build(1, n, 1, r);
    }

    void update(int l, int r, int val)
    {
        update(1, n, 1, l, r, val);
    }

    Node query(int l, int r)
    {
        return query(1, n, 1, l, r);
    }
};

struct Fenwick
{
    int tree[MAXN];
    void reset()
    {
        std::fill(tree + 1, tree + 1 + n, 0);
    }

    void update(int idx, int val)
    {
        for (; idx <= n ; idx += idx & (-idx))
        {
            tree[idx] += val;
        }
    }

    int query(int idx)
    {
        int res = 0;
        for (; idx ; idx -= idx & (-idx))
        {
            res += tree[idx];
        }

        return res;
    }

    int kth(int k)
    {
        int idx = 0;
        for (int lg = MAXLOG - 1 ; lg >= 0 ; --lg)
        {
            if (idx + (1 << lg) <= n && tree[idx + (1 << lg)] < k)
            {
                idx += (1 << lg);
                k -= tree[idx];
            }
        }

        return idx + 1;
    }
};

int h[2 * MAXN];
struct Sparse
{
    int sparse[MAXLOG + 1][2 * MAXN];
    void build(int jump[])
    {
        for (int i = 1 ; i <= 2 * n ; ++i)
        {
            sparse[0][i] = jump[i];
        }

        for (int lg = 1 ; (1 << lg) <= 2 * n ; ++lg)
        {
            for (int u = 1 ; u <= 2 * n ; ++u)
            {
                sparse[lg][u] = sparse[lg - 1][sparse[lg - 1][u]];
            }
        }
    }

    bool jumpLeft(int from, int to)
    {
        for (int lg = MAXLOG ; lg >= 0 ; --lg)
        {
            if (sparse[lg][from] != 0 && sparse[lg][from] >= to)
            {
                from = sparse[lg][from];
            }
        }

        if (from - k + 1 <= to && h[from] >= h[to]) return true;
        return false;
    }

    bool jumpRight(int from, int to)
    {
        for (int lg = MAXLOG ; lg >= 0 ; --lg)
        {
            if (sparse[lg][from] != 0 && sparse[lg][from] <= to)
            {
                from = sparse[lg][from];
            }
        }

        if (from + k - 1 >= to && h[from] >= h[to]) return true;
        return false;
    }
};

Fenwick fenwick;
SegmentTree tree;
Sparse sparsePrev;
Sparse sparseNext;

int r[MAXN];
int prev[2 * MAXN];
int next[2 * MAXN];
int ptrH;

void rec(int idx)
{
    while (true)
    {
        SegmentTree::Node res;
        if (idx > 1) res = res + tree.query(std::max(1, idx - k + 1), idx - 1);
        if (idx < k) res = res + tree.query(n - (k - idx) + 1, n);
        if (res.min == 0)
        {
            rec(res.idx);
        } else
        {
            break;
        }
    }

    h[idx] = ptrH--;
    tree.update(idx, idx, 2 * n);
    if (idx > 1) tree.update(std::max(1, idx - k + 1), idx, -1);
    if (idx < k) tree.update(n - (k - idx) + 1, n, -1);
}

std::map <int,int> toIndex;
void init(int K, std::vector <int> R) 
{
    k = K;
    n = R.size();
    for (int i = 1 ; i <= n ; ++i)
    {
        r[i] = R[i - 1];
    }

    ptrH = n;
    tree.build(r);
    while (ptrH > 0)
    {
        SegmentTree::Node res = tree.query(1, n);
        assert(res.min == 0);
        rec(res.idx);
    }

    for (int i = n + 1 ; i <= 2 * n ; ++i)
    {
        h[i] = h[i - n];
    }

    for (int i = 1 ; i < k ; ++i)
    {
        toIndex[h[i]] = i;
        fenwick.update(h[i], 1);
    }

    for (int i = k ; i <= 2 * n ; ++i)
    {
        if (fenwick.query(h[i]) == 0)
        {
            prev[i] = 0;
        } else
        {
            prev[i] = toIndex[fenwick.kth(fenwick.query(h[i]))];
        }

        toIndex[h[i - k + 1]] = 0;
        toIndex[h[i]] = i;

        fenwick.update(h[i - k + 1], -1);
        fenwick.update(h[i], 1);
    }

    toIndex.clear();
    fenwick.reset();
    for (int i = 2 * n ; i > 2 * n - k + 1 ; --i)
    {
        toIndex[h[i]] = i;
        fenwick.update(h[i], 1);
    }

    for (int i = 2 * n - k + 1 ; i >= 1 ; --i)
    {
        if (fenwick.query(h[i]) == 0)
        {
            next[i] = 0;
        } else
        {
            next[i] = toIndex[fenwick.kth(fenwick.query(h[i]))];
        }

        toIndex[h[i + k - 1]] = 0;
        toIndex[h[i]] = i;

        fenwick.update(h[i + k - 1], -1);
        fenwick.update(h[i], 1);
    }

    sparsePrev.build(prev);
    sparseNext.build(next);
}

int compare_plants(int x, int y) 
{
	x++; y++;
    if (sparsePrev.jumpLeft(x + n, y) || sparseNext.jumpRight(x, y)) return 1;
    if (sparsePrev.jumpLeft(y, x) || sparseNext.jumpRight(y, n + x)) return -1;
    return 0;
}

Compilation message

plants.cpp: In member function 'void SegmentTree::build(int, int, int, int*)':
plants.cpp:52:21: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   52 |         int mid = l + r >> 1;
      |                   ~~^~~
plants.cpp: In member function 'void SegmentTree::update(int, int, int, int, int, int)':
plants.cpp:90:21: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   90 |         int mid = l + r >> 1;
      |                   ~~^~~
plants.cpp: In member function 'SegmentTree::Node SegmentTree::query(int, int, int, int, int)':
plants.cpp:105:21: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
  105 |         int mid = l + r >> 1;
      |                   ~~^~~
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 9816 KB Output is correct
2 Correct 3 ms 9820 KB Output is correct
3 Correct 3 ms 9820 KB Output is correct
4 Correct 4 ms 9820 KB Output is correct
5 Correct 4 ms 9820 KB Output is correct
6 Correct 54 ms 13596 KB Output is correct
7 Correct 116 ms 21716 KB Output is correct
8 Correct 442 ms 91220 KB Output is correct
9 Correct 449 ms 91728 KB Output is correct
10 Correct 456 ms 91900 KB Output is correct
11 Correct 488 ms 95704 KB Output is correct
12 Correct 590 ms 104276 KB Output is correct
13 Correct 484 ms 116304 KB Output is correct
14 Correct 561 ms 91436 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 9816 KB Output is correct
2 Correct 4 ms 9820 KB Output is correct
3 Correct 6 ms 9820 KB Output is correct
4 Correct 4 ms 9820 KB Output is correct
5 Correct 4 ms 9820 KB Output is correct
6 Correct 7 ms 10332 KB Output is correct
7 Correct 96 ms 15440 KB Output is correct
8 Correct 5 ms 10072 KB Output is correct
9 Correct 6 ms 10332 KB Output is correct
10 Correct 65 ms 15308 KB Output is correct
11 Correct 74 ms 15608 KB Output is correct
12 Correct 94 ms 15636 KB Output is correct
13 Correct 66 ms 15444 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 9816 KB Output is correct
2 Correct 4 ms 9820 KB Output is correct
3 Correct 6 ms 9820 KB Output is correct
4 Correct 4 ms 9820 KB Output is correct
5 Correct 4 ms 9820 KB Output is correct
6 Correct 7 ms 10332 KB Output is correct
7 Correct 96 ms 15440 KB Output is correct
8 Correct 5 ms 10072 KB Output is correct
9 Correct 6 ms 10332 KB Output is correct
10 Correct 65 ms 15308 KB Output is correct
11 Correct 74 ms 15608 KB Output is correct
12 Correct 94 ms 15636 KB Output is correct
13 Correct 66 ms 15444 KB Output is correct
14 Correct 122 ms 20816 KB Output is correct
15 Correct 919 ms 89988 KB Output is correct
16 Correct 115 ms 20884 KB Output is correct
17 Correct 922 ms 90044 KB Output is correct
18 Correct 558 ms 102740 KB Output is correct
19 Correct 575 ms 90400 KB Output is correct
20 Correct 777 ms 89504 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 9820 KB Output is correct
2 Correct 6 ms 9820 KB Output is correct
3 Correct 69 ms 14512 KB Output is correct
4 Correct 620 ms 96488 KB Output is correct
5 Correct 710 ms 92120 KB Output is correct
6 Correct 962 ms 90788 KB Output is correct
7 Correct 1103 ms 91824 KB Output is correct
8 Correct 1035 ms 91220 KB Output is correct
9 Correct 603 ms 94800 KB Output is correct
10 Correct 635 ms 94032 KB Output is correct
11 Correct 530 ms 116472 KB Output is correct
12 Correct 584 ms 91656 KB Output is correct
13 Correct 536 ms 108620 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 9816 KB Output is correct
2 Correct 3 ms 10072 KB Output is correct
3 Correct 4 ms 9880 KB Output is correct
4 Correct 4 ms 9820 KB Output is correct
5 Correct 4 ms 9852 KB Output is correct
6 Correct 6 ms 9932 KB Output is correct
7 Correct 15 ms 11008 KB Output is correct
8 Correct 13 ms 10844 KB Output is correct
9 Correct 15 ms 10840 KB Output is correct
10 Correct 16 ms 10844 KB Output is correct
11 Correct 24 ms 10844 KB Output is correct
12 Correct 19 ms 11100 KB Output is correct
13 Correct 12 ms 11008 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 9820 KB Output is correct
2 Correct 4 ms 9872 KB Output is correct
3 Correct 4 ms 9820 KB Output is correct
4 Correct 6 ms 9820 KB Output is correct
5 Correct 6 ms 10332 KB Output is correct
6 Correct 593 ms 90964 KB Output is correct
7 Correct 904 ms 91216 KB Output is correct
8 Correct 1090 ms 91424 KB Output is correct
9 Correct 989 ms 90960 KB Output is correct
10 Correct 573 ms 94096 KB Output is correct
11 Correct 600 ms 92240 KB Output is correct
12 Correct 501 ms 98388 KB Output is correct
13 Correct 635 ms 92788 KB Output is correct
14 Correct 871 ms 91588 KB Output is correct
15 Correct 1024 ms 91444 KB Output is correct
16 Correct 456 ms 94348 KB Output is correct
17 Correct 577 ms 91684 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 9816 KB Output is correct
2 Correct 3 ms 9820 KB Output is correct
3 Correct 3 ms 9820 KB Output is correct
4 Correct 4 ms 9820 KB Output is correct
5 Correct 4 ms 9820 KB Output is correct
6 Correct 54 ms 13596 KB Output is correct
7 Correct 116 ms 21716 KB Output is correct
8 Correct 442 ms 91220 KB Output is correct
9 Correct 449 ms 91728 KB Output is correct
10 Correct 456 ms 91900 KB Output is correct
11 Correct 488 ms 95704 KB Output is correct
12 Correct 590 ms 104276 KB Output is correct
13 Correct 484 ms 116304 KB Output is correct
14 Correct 561 ms 91436 KB Output is correct
15 Correct 4 ms 9816 KB Output is correct
16 Correct 4 ms 9820 KB Output is correct
17 Correct 6 ms 9820 KB Output is correct
18 Correct 4 ms 9820 KB Output is correct
19 Correct 4 ms 9820 KB Output is correct
20 Correct 7 ms 10332 KB Output is correct
21 Correct 96 ms 15440 KB Output is correct
22 Correct 5 ms 10072 KB Output is correct
23 Correct 6 ms 10332 KB Output is correct
24 Correct 65 ms 15308 KB Output is correct
25 Correct 74 ms 15608 KB Output is correct
26 Correct 94 ms 15636 KB Output is correct
27 Correct 66 ms 15444 KB Output is correct
28 Correct 122 ms 20816 KB Output is correct
29 Correct 919 ms 89988 KB Output is correct
30 Correct 115 ms 20884 KB Output is correct
31 Correct 922 ms 90044 KB Output is correct
32 Correct 558 ms 102740 KB Output is correct
33 Correct 575 ms 90400 KB Output is correct
34 Correct 777 ms 89504 KB Output is correct
35 Correct 4 ms 9820 KB Output is correct
36 Correct 6 ms 9820 KB Output is correct
37 Correct 69 ms 14512 KB Output is correct
38 Correct 620 ms 96488 KB Output is correct
39 Correct 710 ms 92120 KB Output is correct
40 Correct 962 ms 90788 KB Output is correct
41 Correct 1103 ms 91824 KB Output is correct
42 Correct 1035 ms 91220 KB Output is correct
43 Correct 603 ms 94800 KB Output is correct
44 Correct 635 ms 94032 KB Output is correct
45 Correct 530 ms 116472 KB Output is correct
46 Correct 584 ms 91656 KB Output is correct
47 Correct 536 ms 108620 KB Output is correct
48 Correct 5 ms 9816 KB Output is correct
49 Correct 3 ms 10072 KB Output is correct
50 Correct 4 ms 9880 KB Output is correct
51 Correct 4 ms 9820 KB Output is correct
52 Correct 4 ms 9852 KB Output is correct
53 Correct 6 ms 9932 KB Output is correct
54 Correct 15 ms 11008 KB Output is correct
55 Correct 13 ms 10844 KB Output is correct
56 Correct 15 ms 10840 KB Output is correct
57 Correct 16 ms 10844 KB Output is correct
58 Correct 24 ms 10844 KB Output is correct
59 Correct 19 ms 11100 KB Output is correct
60 Correct 12 ms 11008 KB Output is correct
61 Correct 83 ms 14928 KB Output is correct
62 Correct 124 ms 21612 KB Output is correct
63 Correct 576 ms 91728 KB Output is correct
64 Correct 735 ms 91996 KB Output is correct
65 Correct 876 ms 91984 KB Output is correct
66 Correct 1128 ms 92136 KB Output is correct
67 Correct 1076 ms 91712 KB Output is correct
68 Correct 710 ms 95828 KB Output is correct
69 Correct 778 ms 93012 KB Output is correct
70 Correct 625 ms 98608 KB Output is correct
71 Correct 840 ms 93444 KB Output is correct
72 Correct 1053 ms 92248 KB Output is correct
73 Correct 1159 ms 92464 KB Output is correct
74 Correct 586 ms 91728 KB Output is correct
75 Correct 617 ms 92756 KB Output is correct