#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a,b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a,b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif
/*
points on the same side: cost = abs(x-y)
only consider points on opposite sides
wlog, x < y
for k = 1, find s s.t:
sum{ abs(x-s)+abs(y-s) } is minimized
consider each x and y point on a number line (total = 2n points)
best s = median of these 2n points (the nth point)
for k = 2, visualize each (x,y) point on the 2d plane (x = row, y = col)
pick 2 points (s,s) and (t,t) s.t:
sum{ min(abs(x-s)+abs(y-s),abs(x-t)+abs(y-t)) } is minimized
can be rewritten as:
sum{ min(dis(x,y,s,s),dis(x,y,t,t)) } (dis(x1,y1,x2,y2) = manhattan distance between points (x1,y1) and (x2,y2))
the line connecting (s,s) and (t,t) is a diagonal
rotate the plane by 45 deg => it is now a straight line
draw the perpendicular bisector of the line (at the midpoint)
points on one side go to s and points on the other side go to t
on the original graph, the perpendicular bisector is an antidiagonal passing through ((s+t)/2,(s+t)/2)
\ / => bisector
\/
/\
/ \ => line connecting (s,s) and (t,t)
all points on the left with x+y <= s+t go to s
all points on the right with x+y > s+t go to t
sort all points by x+y
some pref of points go to s, the rest of the points go to t
for each splitting, find the best min cost for all points to meet at a single point (like k = 1 case)
can be sped up using fenwick trees that can handle lower_bound queries (can also use ordered set for this, but anyways need a fenwick tree for finding the sum on a segment)
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
template<typename T>
struct fenwick {
int n;
vector<T> tr;
int LOG = 0;
fenwick() {
}
fenwick(int n_) {
n = n_;
tr = vector<T>(n + 1);
while((1<<LOG) <= n) LOG++;
}
void reset(){
fill(all(tr),0);
}
int lsb(int x) {
return x & -x;
}
void pupd(int i, T v) {
for(; i <= n; i += lsb(i)){
tr[i] += v;
}
}
T sum(int i) {
T res = 0;
for(; i; i ^= lsb(i)){
res += tr[i];
}
return res;
}
T query(int l, int r) {
if (l > r) return 0;
T res = sum(r) - sum(l - 1);
return res;
}
int lower_bound(T s){
// first pos with sum >= s
if(sum(n) < s) return n+1;
int i = 0;
rev(bit,LOG-1,0){
int j = i+(1<<bit);
if(j > n) conts;
if(tr[j] < s){
s -= tr[j];
i = j;
}
}
return i+1;
}
int upper_bound(T s){
return lower_bound(s+1);
}
};
void solve(int test_case)
{
ll k,n; cin >> k >> n;
vector<array<ll,3>> a;
ll same_side = 0;
rep1(i,n){
char p,q; ll x,y;
cin >> p >> x >> q >> y;
if(p == q){
same_side += abs(x-y);
}
else{
if(x > y) swap(x,y);
a.pb({x+y,x,y});
}
}
sort(all(a));
auto go = [&](vector<array<ll,3>> &curr){
vector<ll> b;
for(auto [val,x,y] : curr){
b.pb(x), b.pb(y);
}
sort(all(b));
ll s = -1;
if(!b.empty()){
s = b[sz(b)/2];
}
ll res = 0;
trav(x,b){
res += abs(x-s);
}
return res;
};
if(k == 1 or a.empty()){
ll ans = go(a);
ans += same_side+sz(a);
cout << ans << endl;
return;
}
n = sz(a);
a.insert(a.begin(),{-1,-1,-1});
vector<ll> b;
rep1(i,n) b.pb(a[i][1]), b.pb(a[i][2]);
b.pb(-1);
sort(all(b));
b.resize(unique(all(b))-b.begin());
ll siz = sz(b);
vector<ll> pref(n+5), suff(n+5);
fenwick<ll> fenw_cnt(siz+5), fenw_sum(siz+5);
auto ins = [&](ll x){
ll i = lower_bound(all(b),x)-b.begin();
fenw_cnt.pupd(i,1);
fenw_sum.pupd(i,x);
};
auto get = [&](ll mid){
ll i = fenw_cnt.lower_bound(mid);
ll cnt1 = fenw_cnt.query(1,i-1), sum1 = fenw_sum.query(1,i-1);
ll cnt2 = fenw_cnt.query(i+1,siz), sum2 = fenw_sum.query(i+1,siz);
return b[i]*cnt1-sum1+sum2-b[i]*cnt2;
};
rep1(i,n){
ins(a[i][1]), ins(a[i][2]);
pref[i] = get(i);
}
fenw_cnt.reset(), fenw_sum.reset();
rev(i,n,1){
ins(a[i][1]), ins(a[i][2]);
suff[i] = get(n-i+1);
}
ll ans = inf2;
rep1(i,n){
amin(ans,pref[i]+suff[i+1]);
}
ans += same_side+n;
cout << ans << endl;
}
int main()
{
fastio;
int t = 1;
// cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
1 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
344 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
344 KB |
Output is correct |
10 |
Correct |
1 ms |
348 KB |
Output is correct |
11 |
Correct |
1 ms |
348 KB |
Output is correct |
12 |
Correct |
19 ms |
6348 KB |
Output is correct |
13 |
Correct |
34 ms |
6280 KB |
Output is correct |
14 |
Correct |
28 ms |
5828 KB |
Output is correct |
15 |
Correct |
21 ms |
3560 KB |
Output is correct |
16 |
Correct |
21 ms |
6228 KB |
Output is correct |
17 |
Correct |
22 ms |
6264 KB |
Output is correct |
18 |
Correct |
25 ms |
6348 KB |
Output is correct |
19 |
Correct |
33 ms |
6336 KB |
Output is correct |
20 |
Correct |
25 ms |
6348 KB |
Output is correct |
21 |
Correct |
28 ms |
6348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
1 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
600 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
348 KB |
Output is correct |
14 |
Correct |
1 ms |
348 KB |
Output is correct |
15 |
Correct |
1 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
344 KB |
Output is correct |
17 |
Correct |
0 ms |
348 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Correct |
0 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
0 ms |
348 KB |
Output is correct |
24 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
0 ms |
348 KB |
Output is correct |
14 |
Correct |
1 ms |
348 KB |
Output is correct |
15 |
Correct |
1 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
344 KB |
Output is correct |
17 |
Correct |
0 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
348 KB |
Output is correct |
19 |
Correct |
0 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
1 ms |
348 KB |
Output is correct |
24 |
Correct |
1 ms |
348 KB |
Output is correct |
25 |
Correct |
26 ms |
6244 KB |
Output is correct |
26 |
Correct |
35 ms |
6312 KB |
Output is correct |
27 |
Correct |
111 ms |
8896 KB |
Output is correct |
28 |
Correct |
118 ms |
9660 KB |
Output is correct |
29 |
Correct |
120 ms |
9676 KB |
Output is correct |
30 |
Correct |
58 ms |
5104 KB |
Output is correct |
31 |
Correct |
28 ms |
6600 KB |
Output is correct |
32 |
Correct |
86 ms |
9420 KB |
Output is correct |
33 |
Correct |
77 ms |
9404 KB |
Output is correct |
34 |
Correct |
92 ms |
9408 KB |
Output is correct |
35 |
Correct |
32 ms |
6336 KB |
Output is correct |
36 |
Correct |
89 ms |
9508 KB |
Output is correct |
37 |
Correct |
30 ms |
6340 KB |
Output is correct |