Submission #1009007

# Submission time Handle Problem Language Result Execution time Memory
1009007 2024-06-27T07:52:40 Z GrindMachine Spy 3 (JOI24_spy3) C++17
92 / 100
142 ms 12984 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
https://codeforces.com/blog/entry/127315?#comment-1131129

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Aoi.h"

namespace {

    int variable_example = 0;

    int function_example(int a, int b) { return a + b; }

}  // namespace

std::string aoi(int n, int m, int q, int k, std::vector<int> A,
                std::vector<int> B, std::vector<long long> C,
                std::vector<int> T, std::vector<int> X) {
    
    // n = #of nodes, m = #of edges
    // A,B,C = edges of graph
    // q = #of query cities
    // T = query cities
    // k = #of deleted edges
    // X = ids of deleted edges

    vector<pll> adj1[n];
    vector<vector<ll>> adj2(n);
    map<pll,ll> mp;

    rep(i,m){
        ll u = A[i], v = B[i], w = C[i];
        adj1[u].pb({v,w}), adj1[v].pb({u,w});
        mp[{u,v}] = mp[{v,u}] = i;
    }

    // build sp tree
    priority_queue<array<ll,3>,vector<array<ll,3>>,greater<array<ll,3>>> pq;
    pq.push({0,0,-1});
    vector<ll> par(n,-1);
    vector<bool> vis(n);
    vector<ll> depth(n);

    while(!pq.empty()){
        auto [dis,u,p] = pq.top();
        pq.pop();

        if(vis[u]) conts;
        vis[u] = 1;
        par[u] = p;
        if(p != -1){
            depth[u] = depth[p]+1;
            adj2[p].pb(u);
        }

        // cout << p << " " << u << endl;

        for(auto [v,w] : adj1[u]){
            pq.push({dis+w,v,u});
        }
    }

    // calc tin,tout
    vector<ll> tin(n), tout(n);
    ll timer = 0;

    auto dfs1 = [&](ll u, auto &&dfs1) -> void{
        tin[u] = timer++;
        trav(v,adj2[u]){
            dfs1(v,dfs1);
        }
        tout[u] = timer-1;
    };

    dfs1(0,dfs1);

    auto is_ances = [&](ll u, ll v){
        return tin[u] <= tin[v] and tout[u] >= tout[v];
    };

    auto get_lca = [&](ll u, ll v){
        // cout << u << " " << v << " ";
        while(u != v){
            if(depth[u] < depth[v]) swap(u,v);
            u = par[u];
        }

        // cout << u << endl;
        return u;
    };

    // find the nodes of the virtual tree
    vector<pll> nodes;
    nodes.pb({0,0});
    rep(i,q){
        ll u = T[i];
        nodes.pb({tin[u],u});
    }

    sort(all(nodes));
    nodes.resize(unique(all(nodes))-nodes.begin());
    ll initial_size = sz(nodes);

    rep(i,initial_size-1){
        ll lca = get_lca(nodes[i].ss,nodes[i+1].ss);
        nodes.pb({tin[lca],lca});
    }

    sort(all(nodes));
    nodes.resize(unique(all(nodes))-nodes.begin());
    assert(sz(nodes) <= 2*q);

    // for(auto [ti,u] : nodes){
    //     cout << ti << " " << u << endl;
    // }
    
    // build the virtual tree + construct walk
    stack<ll> stk;
    vector<ll> pv(n,-1);
    vector<ll> node_id(n,-1);
    stk.push(0);
    node_id[0] = 0;
    string walk = "";
    ll ptr = 1;
    rep1(i,sz(nodes)-1){
        ll u = nodes[i].ss;
        node_id[u] = ptr++;
        while(!is_ances(stk.top(),u)){
            stk.pop();
            walk.pb('0');
        }
        pv[u] = stk.top();
        stk.push(u);
        walk.pb('1');
    }

    while(!stk.empty()){
        stk.pop();
        walk.pb('0');
    }
    assert(sz(walk) == 2*sz(nodes)-1);
    
    // for each edge in the sp tree, find the virtual edge that it belongs to
    vector<ll> idv(m,2*q-1);
    rep1(i,sz(nodes)-1){
        ll u = nodes[i].ss;
        ll incoming_edge = node_id[u]-1;
        assert(incoming_edge >= 0);
        ll ppv = pv[u];

        while(u != ppv){
            ll p = par[u];
            ll id = mp[{u,p}];
            idv[id] = incoming_edge;
            u = p;
        }
    }

    // for each deleted edge, encode the edge in the virtual tree that it belongs to
    string edge_encoding = "";
    rep(i,k){
        ll curr_id = idv[X[i]];
        rev(bit,4,0){
            ll b = 0;
            if(curr_id&(1<<bit)) b = 1;
            edge_encoding.pb(char('0'+b));
        }
    }

    // for each query node, encode it's corresponding node in the virtual tree
    string node_encoding = "";
    rep(i,q){
        ll curr_id = node_id[T[i]];
        assert(curr_id != -1);

        rev(bit,4,0){
            ll b = 0;
            if(curr_id&(1<<bit)) b = 1;
            node_encoding.pb(char('0'+b));
        }
    }

    string s = walk+edge_encoding+node_encoding;
    return s;

    // string s = "";

    // rep(i,q){
    //     ll u = T[i];
    //     vector<ll> path;
    //     while(u){
    //         path.pb(u);
    //         u = par[u];
    //     }
    //     path.pb(0);
        
    //     vector<ll> edges;
    //     rep(j,sz(path)-1){
    //         pll px = {path[j],path[j+1]};
    //         edges.pb(mp[px]);
    //     }

    //     sort(all(edges));

    //     rep(j,k){
    //         ll id = X[j];
    //         if(binary_search(all(edges),id)){
    //             s.pb('1');
    //         }
    //         else{
    //             s.pb('0');
    //         }
    //     }
    // }

    // return s;

    // variable_example++;
    // variable_example = function_example(1, 2);
    // std::string s(100, '0');
    // s[0] = '1';
    // return s;
}
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
https://codeforces.com/blog/entry/127315?#comment-1131129

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Bitaro.h"

namespace {

    int variable_example = 0;

    int function_example(int a, int b) { return a + b; }

}  // namespace

void bitaro(int n, int m, int q, int k, std::vector<int> A, std::vector<int> B,
            std::vector<long long> C, std::vector<int> T, std::vector<int> X,
            std::string s) {

    // n = #of nodes, m = #of edges
    // A,B,C = edges of graph (edge weights of deleted edges = -1)
    // q = #of query cities
    // T = query cities
    // k = #of deleted edges
    // X = ids of deleted edges
    // s = received string

    vector<pll> adj[n];
    map<pll,ll> mp;

    rep(i,m){
        ll u = A[i], v = B[i], w = C[i];
        adj[u].pb({v,w}), adj[v].pb({u,w});
        mp[{u,v}] = mp[{v,u}] = i;
    }

    // recover the walk
    ll ptr = 0;
    stack<ll> stk;
    vector<ll> pv;
    pv.pb(-1);
    ll curr_node = 0;

    while(curr_node != -1){
        char ch = s[ptr++];
        if(ch == '1'){
            pv.pb(curr_node);
            curr_node = sz(pv)-1;
        }
        else{
            curr_node = pv[curr_node];
        }
    }

    // recover the virtual edge that each deleted edge belongs to
    vector<ll> idv(k,-1);
    rep(i,k){
        ll mask = 0;
        rep(bit,5){
            mask = (mask<<1)|(s[ptr++]-'0');
        }

        idv[i] = mask;
    }

    rep(i,q){
        // recover the corresponding node of T[i] in the virtual tree
        ll src = 0;
        rep(bit,5){
            src = (src<<1)|(s[ptr++]-'0');
        }

        vector<bool> good(2*q);
        ll curr_node = src;

        while(curr_node){
            good[curr_node-1] = 1;
            curr_node = pv[curr_node];
        }

        vector<bool> spl(n); 
        vector<bool> on_path(m);

        rep(j,k){
            ll id = X[j];
            if(good[idv[j]]){
                on_path[id] = 1;
                spl[A[id]] = spl[B[id]] = 1;
            }
        }

        rep(j,q){
            spl[T[j]] = 1;
        }

        priority_queue<array<ll,3>,vector<array<ll,3>>,greater<array<ll,3>>> pq;
        pq.push({0,0,-1});
        vector<ll> par(n,-1);
        vector<bool> vis(n);

        while(!pq.empty()){
            auto [dis,u,p] = pq.top();
            pq.pop();

            if(vis[u]) conts;
            vis[u] = 1;
            par[u] = p;

            if(spl[u]){
                ll cnt = 0;
                for(auto [v,w] : adj[u]){
                    ll id = mp[{u,v}];
                    if(w == -1 and on_path[id]){
                        cnt++;
                    }
                }

                if(cnt){
                    while(!pq.empty()){
                        pq.pop();
                    }   

                    for(auto [v,w] : adj[u]){
                        ll id = mp[{u,v}];
                        if(w == -1 and on_path[id]){
                            on_path[id] = 0;
                            pq.push({0,v,u});
                        }
                    }

                    conts;
                }
            }

            for(auto [v,w] : adj[u]){
                if(w == -1) conts;
                pq.push({dis+w,v,u});
            }
        }

        vector<ll> nodes;
        ll u = T[i];
        while(u){
            assert(u != -1);
            nodes.pb(u);
            u = par[u];
        }
        nodes.pb(0);
        reverse(all(nodes));

        vector<int> ans;
        rep(j,sz(nodes)-1){
            pll px = {nodes[j],nodes[j+1]};
            ans.pb(mp[px]);
        }

        answer(ans);

        // trav(x,ans) cout << x << " ";
        // cout << endl;
    }

    // variable_example++;
    // variable_example = function_example(1, 2);
    // for (int i = 0; i < q; i++) {
    //     std::vector<int> v(10);
    //     for (int j = 0; j < 10; j++) {
    //         v[j] = j;
    //     }
    //     answer(v);
    // }
}

Compilation message

Aoi.cpp:67:9: warning: 'int {anonymous}::function_example(int, int)' defined but not used [-Wunused-function]
   67 |     int function_example(int a, int b) { return a + b; }
      |         ^~~~~~~~~~~~~~~~
Aoi.cpp:65:9: warning: '{anonymous}::variable_example' defined but not used [-Wunused-variable]
   65 |     int variable_example = 0;
      |         ^~~~~~~~~~~~~~~~

Bitaro.cpp:67:9: warning: 'int {anonymous}::function_example(int, int)' defined but not used [-Wunused-function]
   67 |     int function_example(int a, int b) { return a + b; }
      |         ^~~~~~~~~~~~~~~~
Bitaro.cpp:65:9: warning: '{anonymous}::variable_example' defined but not used [-Wunused-variable]
   65 |     int variable_example = 0;
      |         ^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 142 ms 12692 KB Output is correct
2 Correct 0 ms 776 KB Output is correct
3 Partially correct 88 ms 10264 KB Partially correct
4 Partially correct 70 ms 9392 KB Partially correct
5 Partially correct 108 ms 10568 KB Partially correct
6 Partially correct 89 ms 10164 KB Partially correct
7 Partially correct 92 ms 10168 KB Partially correct
8 Partially correct 93 ms 10208 KB Partially correct
9 Partially correct 66 ms 9132 KB Partially correct
10 Correct 49 ms 9644 KB Output is correct
11 Partially correct 92 ms 10292 KB Partially correct
12 Correct 77 ms 10268 KB Output is correct
13 Correct 90 ms 10244 KB Output is correct
14 Correct 88 ms 10164 KB Output is correct
15 Correct 66 ms 9736 KB Output is correct
16 Correct 37 ms 9396 KB Output is correct
17 Partially correct 75 ms 9580 KB Partially correct
18 Partially correct 75 ms 9660 KB Partially correct
19 Partially correct 115 ms 12368 KB Partially correct
20 Partially correct 101 ms 12340 KB Partially correct
21 Partially correct 116 ms 12360 KB Partially correct
22 Partially correct 114 ms 12236 KB Partially correct
23 Partially correct 89 ms 12220 KB Partially correct
24 Partially correct 116 ms 12252 KB Partially correct
25 Partially correct 99 ms 10236 KB Partially correct
26 Partially correct 97 ms 10220 KB Partially correct
27 Correct 0 ms 776 KB Output is correct
28 Correct 94 ms 10488 KB Output is correct
29 Partially correct 37 ms 7172 KB Partially correct
30 Correct 90 ms 10676 KB Output is correct
31 Correct 56 ms 10588 KB Output is correct
32 Correct 97 ms 10796 KB Output is correct
33 Correct 91 ms 10424 KB Output is correct
34 Correct 85 ms 10800 KB Output is correct
35 Correct 82 ms 10728 KB Output is correct
36 Correct 81 ms 10816 KB Output is correct
37 Correct 22 ms 5648 KB Output is correct
38 Partially correct 39 ms 7216 KB Partially correct
39 Correct 39 ms 7272 KB Output is correct
40 Correct 19 ms 6836 KB Output is correct
41 Partially correct 126 ms 12292 KB Partially correct
42 Partially correct 76 ms 12484 KB Partially correct
43 Correct 119 ms 12616 KB Output is correct
44 Correct 49 ms 12332 KB Output is correct
45 Partially correct 20 ms 5604 KB Partially correct
46 Partially correct 30 ms 6936 KB Partially correct
47 Correct 31 ms 7008 KB Output is correct
48 Correct 0 ms 784 KB Output is correct
49 Correct 0 ms 776 KB Output is correct
50 Correct 79 ms 12488 KB Output is correct
51 Partially correct 6 ms 1288 KB Partially correct
52 Correct 0 ms 784 KB Output is correct
53 Correct 126 ms 12984 KB Output is correct
54 Partially correct 67 ms 8188 KB Partially correct
55 Correct 75 ms 7988 KB Output is correct
56 Partially correct 88 ms 12108 KB Partially correct
57 Partially correct 121 ms 12044 KB Partially correct
58 Partially correct 81 ms 9144 KB Partially correct
59 Correct 125 ms 11956 KB Output is correct
60 Partially correct 119 ms 11632 KB Partially correct
61 Correct 119 ms 11740 KB Output is correct
62 Correct 107 ms 10900 KB Output is correct
63 Correct 124 ms 12064 KB Output is correct
64 Correct 33 ms 9848 KB Output is correct
65 Correct 53 ms 7240 KB Output is correct
66 Correct 65 ms 12372 KB Output is correct
67 Correct 60 ms 7288 KB Output is correct
68 Correct 69 ms 12440 KB Output is correct
69 Correct 0 ms 784 KB Output is correct
70 Correct 0 ms 784 KB Output is correct
71 Correct 0 ms 784 KB Output is correct
72 Partially correct 22 ms 5404 KB Partially correct
73 Partially correct 39 ms 6676 KB Partially correct
74 Partially correct 41 ms 6656 KB Partially correct
75 Correct 19 ms 6688 KB Output is correct
76 Correct 0 ms 784 KB Output is correct
77 Correct 108 ms 10060 KB Output is correct
78 Partially correct 96 ms 10312 KB Partially correct
79 Correct 87 ms 10168 KB Output is correct
80 Correct 0 ms 776 KB Output is correct
81 Correct 106 ms 10364 KB Output is correct
82 Partially correct 100 ms 10228 KB Partially correct
83 Correct 96 ms 10164 KB Output is correct