답안 #1008904

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1008904 2024-06-27T05:00:49 Z nima_aryan Skyscraper (JOI16_skyscraper) C++17
20 / 100
2000 ms 182628 KB
/**
 *    author:  NimaAryan
 *    created: 2024-06-26 20:39:48
**/
#include <bits/stdc++.h>

using namespace std;

#ifdef LOCAL
#include "algo/debug.h"
#endif

using i64 = long long;

template <typename T>
T inverse(T a, T m) {
  T u = 0, v = 1;
  while (a != 0) {
    T t = m / a;
    m -= t * a; swap(a, m);
    u -= t * v; swap(u, v);
  }
  assert(m == 1);
  return u;
}

template <typename T>
class Modular {
 public:
  using Type = typename decay<decltype(T::value)>::type;

  constexpr Modular() : value() {}
  template <typename U>
  Modular(const U& x) {
    value = normalize(x);
  }

  template <typename U>
  static Type normalize(const U& x) {
    Type v;
    if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
    else v = static_cast<Type>(x % mod());
    if (v < 0) v += mod();
    return v;
  }

  const Type& operator()() const { return value; }
  template <typename U>
  explicit operator U() const { return static_cast<U>(value); }
  constexpr static Type mod() { return T::value; }

  Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
  Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
  template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
  template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
  Modular& operator++() { return *this += 1; }
  Modular& operator--() { return *this -= 1; }
  Modular operator++(int) { Modular result(*this); *this += 1; return result; }
  Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
  Modular operator-() const { return Modular(-value); }

  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type & operator*=(const Modular& rhs) {
#ifdef _WIN32
    uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
    uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
    asm(
      "divl %4; \n\t"
      : "=a" (d), "=d" (m)
      : "d" (xh), "a" (xl), "r" (mod())
    );
    value = m;
#else
    value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
    return *this;
  }
  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type & operator*=(const Modular& rhs) {
    long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());
    value = normalize(value * rhs.value - q * mod());
    return *this;
  }
  template <typename U = T>
  typename enable_if < !is_integral<typename Modular<U>::Type>::value, Modular >::type & operator*=(const Modular& rhs) {
    value = normalize(value * rhs.value);
    return *this;
  }

  Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }

  friend const Type& abs(const Modular& x) { return x.value; }

  template <typename U>
  friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);

  template <typename U>
  friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);

  template <typename V, typename U>
  friend V& operator>>(V& stream, Modular<U>& number);

 private:
  Type value;
};

template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }

template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }

template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }

template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }

template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }

template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }

template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }

template <typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
  assert(b >= 0);
  Modular<T> x = a, res = 1;
  U p = b;
  while (p > 0) {
    if (p & 1) res *= x;
    x *= x;
    p >>= 1;
  }
  return res;
}
template <typename T, typename U> Modular<T> operator^(const Modular<T>& lhs, U rhs) { return power(lhs, rhs); };

template <typename T>
bool IsZero(const Modular<T>& number) {
  return number() == 0;
}

template <typename T>
string to_string(const Modular<T>& number) {
  return to_string(number());
}

// U == std::ostream? but done this way because of fastoutput
template <typename U, typename T>
U& operator<<(U& stream, const Modular<T>& number) {
  return stream << number();
}

// U == std::istream? but done this way because of fastinput
template <typename U, typename T>
U& operator>>(U& stream, Modular<T>& number) {
  typename common_type<typename Modular<T>::Type, long long>::type x;
  stream >> x;
  number.value = Modular<T>::normalize(x);
  return stream;
}

/*
using ModType = int;

struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/

constexpr int md = (int) 1e9 + 7;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;

int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  int N, L;
  cin >> N >> L;

  vector<int> A(N);
  for (int i = 0; i < N; ++i) {
    cin >> A[i];
  }

  if (N == 1) {
    cout << 1 << "\n";
    return 0;
  }

  sort(A.begin(), A.end());
  int M = N * 1000;
  int T = M + 1 + L + 5;
  vector f(N + 1, vector(T + 1, vector<Mint>(3)));
  f[1][0][0] = 1;
  f[1][-A[0] + M][1] = 2;
  f[1][2 * -A[0] + M][2] = 1;
  for (int i = 1; i < N; ++i) {
    vector g(N + 1, vector(T + 1, vector<Mint>(3)));
    for (int c = 1; c <= N; ++c) {
      for (int s = 0; s <= T; ++s) {
        {
          if (c + 1 <= N && s - 2 * A[i] >= 0) {
            g[c + 1][s - 2 * A[i]][0] += f[c][s][0] * max(0, c - 1);
          }
          g[c][s][0] += f[c][s][0] * max(0, 2 * c - 2);
          if (c - 1 >= 0 && s + 2 * A[i] <= T) {
            g[c - 1][s + 2 * A[i]][0] += f[c][s][0] * max(0, c - 1);
          }
        }
        {
          if (c + 1 <= N && s - 2 * A[i] >= 0) {
            g[c + 1][s - 2 * A[i]][1] += f[c][s][1] * c;
          }
          if (c + 1 <= N && s - A[i] >= 0) {
            g[c + 1][s - A[i]][0] += f[c][s][1];
          }
          g[c][s][1] += f[c][s][1] * max(0, 2 * c - 1);
          if (s + A[i] <= T) {
            g[c][s + A[i]][0] += f[c][s][1];
          }
          if (c - 1 >= 0 && s + 2 * A[i] <= T) {
            g[c - 1][s + 2 * A[i]][1] += f[c][s][1] * max(0, c - 1);
          }
        }
        {
          if (c + 1 <= N && s - 2 * A[i] >= 0) {
            g[c + 1][s - 2 * A[i]][2] += f[c][s][2] * (c + 1);
          }
          if (c + 1 <= N && s - A[i] >= 0) {
            g[c + 1][s - A[i]][1] += f[c][s][2] * 2;
          }
          g[c][s][2] += f[c][s][2] * 2 * c;
          if (s + A[i] <= T) {
            g[c][s + A[i]][1] += f[c][s][2] * 2;
          }
          if (c - 1 >= 0 && s + 2 * A[i] <= T) {
            g[c - 1][s + 2 * A[i]][2] += f[c][s][2] * max(0, c - 1);
          }
        }
      }
    }
    f.swap(g);
  }

  Mint ans = 0;
  for (int l = 0; l <= L; ++l) {
    ans += f[1][l + M][0];
  }
  cout << ans << "\n";

  return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 3 ms 1884 KB Output is correct
4 Correct 23 ms 5476 KB Output is correct
5 Correct 63 ms 9756 KB Output is correct
6 Correct 34 ms 9656 KB Output is correct
7 Correct 38 ms 8920 KB Output is correct
8 Correct 35 ms 8884 KB Output is correct
9 Correct 48 ms 9728 KB Output is correct
10 Correct 56 ms 8876 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 116 ms 18240 KB Output is correct
2 Correct 207 ms 24476 KB Output is correct
3 Correct 194 ms 24336 KB Output is correct
4 Correct 210 ms 24420 KB Output is correct
5 Correct 219 ms 24336 KB Output is correct
6 Correct 209 ms 24324 KB Output is correct
7 Correct 199 ms 24336 KB Output is correct
8 Correct 215 ms 24268 KB Output is correct
9 Correct 199 ms 24332 KB Output is correct
10 Correct 207 ms 24508 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 3 ms 1884 KB Output is correct
4 Correct 23 ms 5476 KB Output is correct
5 Correct 63 ms 9756 KB Output is correct
6 Correct 34 ms 9656 KB Output is correct
7 Correct 38 ms 8920 KB Output is correct
8 Correct 35 ms 8884 KB Output is correct
9 Correct 48 ms 9728 KB Output is correct
10 Correct 56 ms 8876 KB Output is correct
11 Correct 116 ms 18240 KB Output is correct
12 Correct 207 ms 24476 KB Output is correct
13 Correct 194 ms 24336 KB Output is correct
14 Correct 210 ms 24420 KB Output is correct
15 Correct 219 ms 24336 KB Output is correct
16 Correct 209 ms 24324 KB Output is correct
17 Correct 199 ms 24336 KB Output is correct
18 Correct 215 ms 24268 KB Output is correct
19 Correct 199 ms 24332 KB Output is correct
20 Correct 207 ms 24508 KB Output is correct
21 Execution timed out 2052 ms 182628 KB Time limit exceeded
22 Halted 0 ms 0 KB -