답안 #1002712

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1002712 2024-06-19T18:31:20 Z TheSahib Dabbeh (INOI20_dabbeh) C++14
100 / 100
1452 ms 189688 KB
#pragma optimize("O3")
#include <bits/stdc++.h>
 
using namespace std;
 
#define int long long
#define ll long long
#define pii pair<int, int>
#define all(v) v.begin(), v.end()
#define oo 1e9
const ll MAX = 5e5 + 5, B = 61, MOD = (1ll << 61) - 1, LOGMAX = 18;

struct ST{
    pii tree[4 * MAX];
    void init(){
        for(int i = 0; i < 4 * MAX; i++) tree[i] = {0, 0};
    }
    void update(int node, int l, int r, int pos, pii val){
        if(l == r){
            tree[node] = val;
            return;
        }
        int mid = (l + r) / 2;
        if(pos <= mid) update(2 * node, l, mid, pos, val);
        else update(2 * node + 1, mid + 1, r, pos, val);
        tree[node] = max(tree[2 * node], tree[2 * node + 1]);
    }
    pii ask(int node, int l, int r, int ql, int qr){
        if(qr < l || r < ql) return {0, 0};
        if(ql <= l && r <= qr) return tree[node];
        int mid = (l + r) / 2;
        return max(ask(2 * node, l, mid, ql, qr), ask(2 * node + 1, mid + 1, r, ql, qr));
    }
};
ll binpow(ll a, ll b){
    if(b == 0) return 1;
    if(b & 1) return (__int128_t)binpow(a, b - 1) % MOD * a % MOD;
    return binpow((__int128_t)a * a % MOD, b / 2) % MOD;
}
ll inv(ll a){
    return binpow(a, MOD - 2);
}
int n, q;
string s;
string t[MAX];
 
ll pre[MAX];
ll P[(int)5e5 + 5];
ll invP[(int)5e5 + 5];
int par[LOGMAX][MAX];
int nxt[MAX];
ST st;
unordered_set<ll> mp[MAX];
 
int calc(int l, int r){
    return (__int128_t)(pre[r] - pre[l - 1] + MOD) % MOD * invP[l - 1] % MOD;
}
 
int sz[MAX];
 
void solve(){
    P[0]= 1;
    invP[0] = 1;
    for(int i = 1; i <= 5e5; i++){
        P[i] = (__int128_t)P[i - 1] * B % MOD;
        invP[i] = (__int128_t)invP[i - 1] * inv(B) % MOD;
    }
    cin >> n >> q;
    for(int i = 1; i <= n; i++){
        cin >> t[i];
        ll H = 0;
        for(int j = 0; j < t[i].size(); j++){
            H = (__int128_t)(H + (__int128_t)(t[i][j] - 'a' + 1) * P[j] % MOD) % MOD;
            mp[j + 1].insert(H);
        }
    }
    cin >> s;
    n = s.size();
    for(int i = 1; i <= n; i++){
        pre[i] = (__int128_t)(pre[i - 1] + (__int128_t)(s[i - 1] - 'a' + 1) * P[i - 1] % MOD) % MOD;
    }
    st.init();
    st.update(1, 1, n + 1, n + 1, {n + 1, n + 1});
    par[0][n + 1] = n + 1;
    nxt[n + 1] = n + 1;
    for(int i = n; i >= 1; i--){
        if(!mp[1].count(calc(i, i))){
            par[0][i] = i;
            nxt[i] = i;
            st.update(1, 1, n + 1, i, {i, i});
            continue;
        }
        int l = i, r = n;
        while(l < r){
            int mid = (l + r + 1) / 2;
            if(mp[mid - i + 1].count(calc(i, mid))) l = mid;
            else r = mid - 1;
        }
        par[0][i] = st.ask(1, 1, n + 1, i + 1, l + 1).second;
        nxt[i] = l + 1;
        st.update(1, 1, n + 1, i, {l + 1, i});
    }
    for(int j = 1; j < LOGMAX; j++){
        for(int i = 1; i <= n + 1; i++){
            par[j][i] = par[j - 1][par[j - 1][i]];
        }
    }
    while(q--){
        int l, r; cin >> l >> r;
        l++;
        if(nxt[l] > r){
            cout << "1\n";
            continue;
        }
        ll ans = 0;
        for(int i = LOGMAX - 1; i >= 0; i--){
            if(nxt[par[i][l]] <= r){
                ans += (1ll << i);
                l = par[i][l];
            }
        }
        if(nxt[par[0][l]] <= r) cout << "-1\n";
        else cout << ans + 2 << '\n';
    }
}
 
signed main(){
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int t = 1;
    while(t--){
        solve();
    }
}

Compilation message

Main.cpp:1: warning: ignoring '#pragma optimize ' [-Wunknown-pragmas]
    1 | #pragma optimize("O3")
      | 
Main.cpp: In function 'void solve()':
Main.cpp:72:26: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::__cxx11::basic_string<char>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   72 |         for(int j = 0; j < t[i].size(); j++){
      |                        ~~^~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 677 ms 82772 KB Output is correct
2 Correct 819 ms 102224 KB Output is correct
3 Correct 770 ms 97876 KB Output is correct
4 Correct 817 ms 101964 KB Output is correct
5 Correct 783 ms 100532 KB Output is correct
6 Correct 838 ms 104528 KB Output is correct
7 Correct 853 ms 108248 KB Output is correct
8 Correct 847 ms 106076 KB Output is correct
9 Correct 824 ms 103748 KB Output is correct
10 Correct 863 ms 90192 KB Output is correct
11 Correct 838 ms 147184 KB Output is correct
12 Correct 736 ms 114576 KB Output is correct
13 Correct 854 ms 132676 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1010 ms 137648 KB Output is correct
2 Correct 1029 ms 143076 KB Output is correct
3 Correct 1014 ms 138756 KB Output is correct
4 Correct 1020 ms 133932 KB Output is correct
5 Correct 874 ms 134016 KB Output is correct
6 Correct 955 ms 143244 KB Output is correct
7 Correct 952 ms 145484 KB Output is correct
8 Correct 912 ms 140812 KB Output is correct
9 Correct 996 ms 144124 KB Output is correct
10 Correct 981 ms 147572 KB Output is correct
11 Correct 892 ms 138880 KB Output is correct
12 Correct 982 ms 137384 KB Output is correct
13 Correct 1068 ms 148864 KB Output is correct
14 Correct 1104 ms 147036 KB Output is correct
15 Correct 968 ms 131960 KB Output is correct
16 Correct 977 ms 189688 KB Output is correct
17 Correct 901 ms 148368 KB Output is correct
18 Correct 916 ms 147668 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 677 ms 82772 KB Output is correct
2 Correct 819 ms 102224 KB Output is correct
3 Correct 770 ms 97876 KB Output is correct
4 Correct 817 ms 101964 KB Output is correct
5 Correct 783 ms 100532 KB Output is correct
6 Correct 838 ms 104528 KB Output is correct
7 Correct 853 ms 108248 KB Output is correct
8 Correct 847 ms 106076 KB Output is correct
9 Correct 824 ms 103748 KB Output is correct
10 Correct 863 ms 90192 KB Output is correct
11 Correct 838 ms 147184 KB Output is correct
12 Correct 736 ms 114576 KB Output is correct
13 Correct 854 ms 132676 KB Output is correct
14 Correct 1010 ms 137648 KB Output is correct
15 Correct 1029 ms 143076 KB Output is correct
16 Correct 1014 ms 138756 KB Output is correct
17 Correct 1020 ms 133932 KB Output is correct
18 Correct 874 ms 134016 KB Output is correct
19 Correct 955 ms 143244 KB Output is correct
20 Correct 952 ms 145484 KB Output is correct
21 Correct 912 ms 140812 KB Output is correct
22 Correct 996 ms 144124 KB Output is correct
23 Correct 981 ms 147572 KB Output is correct
24 Correct 892 ms 138880 KB Output is correct
25 Correct 982 ms 137384 KB Output is correct
26 Correct 1068 ms 148864 KB Output is correct
27 Correct 1104 ms 147036 KB Output is correct
28 Correct 968 ms 131960 KB Output is correct
29 Correct 977 ms 189688 KB Output is correct
30 Correct 901 ms 148368 KB Output is correct
31 Correct 916 ms 147668 KB Output is correct
32 Correct 1034 ms 120748 KB Output is correct
33 Correct 1107 ms 129952 KB Output is correct
34 Correct 1144 ms 134904 KB Output is correct
35 Correct 1104 ms 132768 KB Output is correct
36 Correct 1055 ms 138132 KB Output is correct
37 Correct 991 ms 120340 KB Output is correct
38 Correct 1393 ms 153540 KB Output is correct
39 Correct 1286 ms 143736 KB Output is correct
40 Correct 1377 ms 156332 KB Output is correct
41 Correct 1381 ms 157060 KB Output is correct
42 Correct 1428 ms 148368 KB Output is correct
43 Correct 997 ms 115520 KB Output is correct
44 Correct 963 ms 114748 KB Output is correct
45 Correct 988 ms 113936 KB Output is correct
46 Correct 994 ms 121708 KB Output is correct
47 Correct 1280 ms 138640 KB Output is correct
48 Correct 1318 ms 145200 KB Output is correct
49 Correct 1302 ms 139144 KB Output is correct
50 Correct 1452 ms 154332 KB Output is correct
51 Correct 975 ms 140288 KB Output is correct
52 Correct 965 ms 155108 KB Output is correct
53 Correct 1006 ms 141776 KB Output is correct