#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<ll> v;
typedef vector<v> vv;
typedef vector<vv> vvv;
typedef pair<ll,ll> p;
typedef vector<p> vp;
typedef vector<vp> vvp;
typedef vector<vvp> vvvp;
typedef pair<ll, p> tri;
typedef vector<tri> vtri;
typedef vector<vtri> vvtri;
typedef vector<vvtri> vvvtri;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<vvb> vvvb;
#define f first
#define s second
#define pb push_back
#define eb emplace_back
#define all(v) (v).begin(),(v).end()
const ll INF = 1e18;
const ll mod = 1e9 + 7;
ll modPow(ll a, ll b)
{
if (b == 0) return 1;
ll res = modPow(a, b / 2);
res = (res * res) % mod;
if (b % 2 == 1) res = (res * a) % mod;
return res;
}
void getWinningStates(ll i, vv &graph, vb &winning, vb &visited, v &losingChildrenCount, vector<set<ll>> &losingChildren)
{
if (visited[i]) return;
visited[i] = true;
for (ll x : graph[i])
{
if (!visited[x])
{
getWinningStates(x, graph, winning, visited, losingChildrenCount, losingChildren);
if (!winning[x])
{
winning[i] = true;
losingChildrenCount[i]++;
losingChildren[i].insert(x);
}
}
}
}
ll getSubtreeSize(ll i, vv &graph, v &res)
{
if (res[i] != 0) return 0;
res[i] = 1;
for (ll x : graph[i]) res[i] += getSubtreeSize(x, graph, res);
return res[i];
}
p operator+(p a, p b)
{
return p(a.f + b.f, a.s + b.s);
}
void operator+=(p &a, p b)
{
a.f += b.f; a.s += b.s;
}
p operator-(p a, p b)
{
return p(a.f - b.f, a.s - b.s);
}
void operator-=(p &a, p b)
{
a.f -= b.f;
a.s -= b.s;
}
p operator%(p a, ll mod)
{
return p(((a.f % mod) + mod) % mod, ((a.s % mod) + mod) % mod);
}
void operator%=(p &a, ll mod)
{
a = a % mod;
}
void solve(ll i, vv &graph, vb &isWinning, vvp &res, vb &visited, v &subtreeSize, vvp &childrenS)
{
ll N = graph.size();
visited[i] = true;
for (ll x : graph[i])
if (!visited[x])
{
solve(x, graph, isWinning, res, visited, subtreeSize, childrenS);
childrenS[i][0] += res[x][0];
childrenS[i][1] += res[x][1];
}
ll losingChildren = 0;
ll losingChild;
for (ll x : graph[i])
{
if (!visited[x] && !isWinning[x])
{
losingChildren++;
losingChild = x;
}
}
if (losingChildren == 0)
{
res[i][1] = p(N, mod - 1) + childrenS[i][0];
res[i][0] = p(0, 1) + childrenS[i][1];
res[i][0] %= mod;
}
else if (losingChildren == 1)
{
res[i][1] = p((N * (subtreeSize[i] - subtreeSize[losingChild])) % mod, 0);
res[i][1] += res[losingChild][0];
res[i][0] = res[losingChild][1];
}
else
{
res[i][0] = p(0, 0);
res[i][1] = p((N * subtreeSize[i]) % mod, 0);
}
res[i][1] %= mod;
visited[i] = false;
}
void rerootSolve(ll i, ll par, vv &graph, vvp &res, vb &visited, v &subtreeSize, vvp &childrenS, vvp &curRootDP, vb &isWinningAsRoot, v &losingChildrenCount, vector<set<ll>> &losingChildren)
{
ll N = graph.size();
if (visited[i]) return;
visited[i] = true;
vp parChildrenS(2),myChildrenS(2),parCurRootDP(2),myCurRootDP(2);
if (par != -1)
{
copy(all(childrenS[par]), parChildrenS.begin());
copy(all(childrenS[i]), myChildrenS.begin());
copy(all(curRootDP[par]), parCurRootDP.begin());
copy(all(curRootDP[i]), myCurRootDP.begin());
if (losingChildrenCount[i] == 0)
{
losingChildrenCount[par]--;
losingChildren[par].erase(i);
}
if (losingChildrenCount[par] == 0)
{
losingChildrenCount[i]++;
losingChildren[i].insert(par);
}
subtreeSize[par] -= subtreeSize[i];
subtreeSize[i] += subtreeSize[par];
childrenS[par][0] -= curRootDP[i][0];
childrenS[par][1] -= curRootDP[i][1];
childrenS[par][1] %= mod;
childrenS[par][0] %= mod;
if (losingChildrenCount[par] == 0)
{
curRootDP[par][1] = p(N, mod - 1) + childrenS[par][0];
curRootDP[par][0] = p(0, 1) + childrenS[par][1];
curRootDP[par][0] %= mod;
}
else if (losingChildrenCount[par] == 1)
{
ll losingChild = *losingChildren[par].begin();
curRootDP[par][1] = p((N * (subtreeSize[par] - subtreeSize[losingChild])) % mod, 0);
curRootDP[par][1] += curRootDP[losingChild][0];
curRootDP[par][0] = curRootDP[losingChild][1];
}
else
{
curRootDP[par][0] = p(0, 0);
curRootDP[par][1] = p((N * subtreeSize[par]) % mod, 0);
}
curRootDP[par][1] %= mod;
childrenS[i][0] += curRootDP[par][0];
childrenS[i][1] += curRootDP[par][1];
if (losingChildrenCount[i] == 0)
{
curRootDP[i][1] = p(N, mod - 1) + childrenS[i][0];
curRootDP[i][0] = p(0, 1) + childrenS[i][1];
curRootDP[i][0] %= mod;
}
else if (losingChildrenCount[i] == 1)
{
ll losingChild = *losingChildren[i].begin();
curRootDP[i][1] = p((N * (subtreeSize[i] - subtreeSize[losingChild])) % mod, 0);
curRootDP[i][1] += curRootDP[losingChild][0];
curRootDP[i][0] = curRootDP[losingChild][1];
}
else
{
curRootDP[i][0] = p(0, 0);
curRootDP[i][1] = p((N * subtreeSize[i]) % mod, 0);
}
curRootDP[i][1] %= mod;
}
isWinningAsRoot[i] = losingChildrenCount[i] > 0;
res[i][0] = curRootDP[i][0];
res[i][1] = curRootDP[i][1];
for (ll x : graph[i])
{
rerootSolve(x, i, graph, res, visited, subtreeSize, childrenS, curRootDP, isWinningAsRoot, losingChildrenCount, losingChildren);;
}
if (par != -1)
{
if (losingChildrenCount[par] == 0)
{
losingChildrenCount[i]--;
losingChildren[i].erase(par);
}
if (losingChildrenCount[i] == 0)
{
losingChildrenCount[par]++;
losingChildren[par].insert(i);
}
subtreeSize[i] -= subtreeSize[par];
subtreeSize[par] += subtreeSize[i];
childrenS[par] = parChildrenS;
childrenS[i] = myChildrenS;
curRootDP[par] = parCurRootDP;
curRootDP[i] = myCurRootDP;
}
}
vv multiply(vv a, vv b)
{
vv res(a.size(), v(b[0].size()));
for (ll i= 0; i < a.size(); i++)
{
for (ll j = 0; j < b[0].size(); j++)
{
for (ll k = 0; k < a[0].size(); k++) res[i][j] += (a[i][k] * b[k][j]) % mod;
res[i][j] %= mod;
}
}
return res;
}
vv exponent(vv a, ll exp)
{
if (exp == 0) return {{1,0},{0,1}};
vv res = exponent(a, exp / 2);
res = multiply(res, res);
if (exp % 2 == 1) res = multiply(res, a);
return res;
}
int main()
{
ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
long long N, D;
cin >> N >> D;
vv graph(N);
for (ll i= 0; i < N - 1; i++)
{
long long a, b;
cin >> a >> b;
a--; b--;
graph[a].pb(b);
graph[b].pb(a);
}
vvp amountOfWaysToGet(N, vp(2, p(0, 0)));
vb isWinning(N), visited(N, false);
v losingChildrenCount(N, 0);
vector<set<ll>> losingChildren(N);
getWinningStates(0, graph, isWinning, visited, losingChildrenCount, losingChildren);
v subtreeSize(N, 0);
getSubtreeSize(0, graph, subtreeSize);
vvp dp(N, vp(2, p(0, 0)));
visited = vb(N, false);
vvp childrenS(N, vp(2, p(0, 0)));
solve(0, graph, isWinning, dp, visited, subtreeSize, childrenS);
vb winAsRoot(N, false); visited = vb(N, false);
rerootSolve(0, -1, graph, amountOfWaysToGet, visited, subtreeSize, childrenS, dp, winAsRoot, losingChildrenCount, losingChildren);
ll winningCount = 0, losingCount = 0;
for (auto x : winAsRoot)
{
if (x) winningCount++;
}
p sum = p(0, 0);
for (auto x : amountOfWaysToGet) sum += x[1];
sum %= mod;
ll weighted = winningCount, absolute = 1;
vv matrix{{sum.s, sum.f},{0, (N * N) % mod}};
vv cur = {{weighted}, {absolute}};
vv exponented = exponent(matrix, D - 1);
vv res = multiply(exponented, cur);
cout << (res[0][0] * amountOfWaysToGet[0][1].s + res[1][0] * amountOfWaysToGet[0][1].f) % mod << "\n";
return 0;
}
Compilation message
startrek.cpp: In function 'vv multiply(vv, vv)':
startrek.cpp:240:22: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::vector<long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
240 | for (ll i= 0; i < a.size(); i++)
| ~~^~~~~~~~~~
startrek.cpp:242:26: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
242 | for (ll j = 0; j < b[0].size(); j++)
| ~~^~~~~~~~~~~~~
startrek.cpp:244:30: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
244 | for (ll k = 0; k < a[0].size(); k++) res[i][j] += (a[i][k] * b[k][j]) % mod;
| ~~^~~~~~~~~~~~~
startrek.cpp: In function 'int main()':
startrek.cpp:287:26: warning: unused variable 'losingCount' [-Wunused-variable]
287 | ll winningCount = 0, losingCount = 0;
| ^~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1 ms |
604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
1116 KB |
Output is correct |
8 |
Correct |
1 ms |
1368 KB |
Output is correct |
9 |
Correct |
1 ms |
604 KB |
Output is correct |
10 |
Correct |
1 ms |
604 KB |
Output is correct |
11 |
Correct |
1 ms |
604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
1116 KB |
Output is correct |
8 |
Correct |
1 ms |
1368 KB |
Output is correct |
9 |
Correct |
1 ms |
604 KB |
Output is correct |
10 |
Correct |
1 ms |
604 KB |
Output is correct |
11 |
Correct |
1 ms |
604 KB |
Output is correct |
12 |
Correct |
178 ms |
61780 KB |
Output is correct |
13 |
Correct |
184 ms |
91880 KB |
Output is correct |
14 |
Correct |
113 ms |
35916 KB |
Output is correct |
15 |
Correct |
141 ms |
36168 KB |
Output is correct |
16 |
Correct |
145 ms |
36432 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
1116 KB |
Output is correct |
8 |
Correct |
1 ms |
1368 KB |
Output is correct |
9 |
Correct |
1 ms |
604 KB |
Output is correct |
10 |
Correct |
1 ms |
604 KB |
Output is correct |
11 |
Correct |
1 ms |
604 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
604 KB |
Output is correct |
14 |
Correct |
1 ms |
348 KB |
Output is correct |
15 |
Correct |
1 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
348 KB |
Output is correct |
17 |
Correct |
1 ms |
348 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Correct |
1 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
1 ms |
1116 KB |
Output is correct |
22 |
Correct |
1 ms |
1116 KB |
Output is correct |
23 |
Correct |
1 ms |
604 KB |
Output is correct |
24 |
Correct |
1 ms |
768 KB |
Output is correct |
25 |
Correct |
2 ms |
604 KB |
Output is correct |
26 |
Correct |
1 ms |
860 KB |
Output is correct |
27 |
Correct |
2 ms |
1372 KB |
Output is correct |
28 |
Correct |
1 ms |
600 KB |
Output is correct |
29 |
Correct |
1 ms |
604 KB |
Output is correct |
30 |
Correct |
1 ms |
604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
1116 KB |
Output is correct |
8 |
Correct |
1 ms |
1368 KB |
Output is correct |
9 |
Correct |
1 ms |
604 KB |
Output is correct |
10 |
Correct |
1 ms |
604 KB |
Output is correct |
11 |
Correct |
1 ms |
604 KB |
Output is correct |
12 |
Correct |
178 ms |
61780 KB |
Output is correct |
13 |
Correct |
184 ms |
91880 KB |
Output is correct |
14 |
Correct |
113 ms |
35916 KB |
Output is correct |
15 |
Correct |
141 ms |
36168 KB |
Output is correct |
16 |
Correct |
145 ms |
36432 KB |
Output is correct |
17 |
Correct |
0 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
604 KB |
Output is correct |
19 |
Correct |
1 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
0 ms |
348 KB |
Output is correct |
24 |
Correct |
1 ms |
348 KB |
Output is correct |
25 |
Correct |
1 ms |
348 KB |
Output is correct |
26 |
Correct |
1 ms |
1116 KB |
Output is correct |
27 |
Correct |
1 ms |
1116 KB |
Output is correct |
28 |
Correct |
1 ms |
604 KB |
Output is correct |
29 |
Correct |
1 ms |
768 KB |
Output is correct |
30 |
Correct |
2 ms |
604 KB |
Output is correct |
31 |
Correct |
1 ms |
860 KB |
Output is correct |
32 |
Correct |
2 ms |
1372 KB |
Output is correct |
33 |
Correct |
1 ms |
600 KB |
Output is correct |
34 |
Correct |
1 ms |
604 KB |
Output is correct |
35 |
Correct |
1 ms |
604 KB |
Output is correct |
36 |
Correct |
170 ms |
61704 KB |
Output is correct |
37 |
Correct |
203 ms |
92024 KB |
Output is correct |
38 |
Correct |
137 ms |
36092 KB |
Output is correct |
39 |
Correct |
145 ms |
36064 KB |
Output is correct |
40 |
Correct |
163 ms |
36268 KB |
Output is correct |
41 |
Correct |
180 ms |
77600 KB |
Output is correct |
42 |
Correct |
174 ms |
84052 KB |
Output is correct |
43 |
Correct |
132 ms |
31944 KB |
Output is correct |
44 |
Correct |
110 ms |
36456 KB |
Output is correct |
45 |
Correct |
121 ms |
35948 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1 ms |
604 KB |
Output is correct |
3 |
Correct |
0 ms |
344 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
0 ms |
344 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
0 ms |
348 KB |
Output is correct |
14 |
Correct |
1 ms |
1116 KB |
Output is correct |
15 |
Correct |
1 ms |
1368 KB |
Output is correct |
16 |
Correct |
1 ms |
604 KB |
Output is correct |
17 |
Correct |
1 ms |
604 KB |
Output is correct |
18 |
Correct |
1 ms |
604 KB |
Output is correct |
19 |
Correct |
178 ms |
61780 KB |
Output is correct |
20 |
Correct |
184 ms |
91880 KB |
Output is correct |
21 |
Correct |
113 ms |
35916 KB |
Output is correct |
22 |
Correct |
141 ms |
36168 KB |
Output is correct |
23 |
Correct |
145 ms |
36432 KB |
Output is correct |
24 |
Correct |
0 ms |
348 KB |
Output is correct |
25 |
Correct |
1 ms |
604 KB |
Output is correct |
26 |
Correct |
1 ms |
348 KB |
Output is correct |
27 |
Correct |
1 ms |
348 KB |
Output is correct |
28 |
Correct |
1 ms |
348 KB |
Output is correct |
29 |
Correct |
1 ms |
348 KB |
Output is correct |
30 |
Correct |
0 ms |
348 KB |
Output is correct |
31 |
Correct |
1 ms |
348 KB |
Output is correct |
32 |
Correct |
1 ms |
348 KB |
Output is correct |
33 |
Correct |
1 ms |
1116 KB |
Output is correct |
34 |
Correct |
1 ms |
1116 KB |
Output is correct |
35 |
Correct |
1 ms |
604 KB |
Output is correct |
36 |
Correct |
1 ms |
768 KB |
Output is correct |
37 |
Correct |
2 ms |
604 KB |
Output is correct |
38 |
Correct |
1 ms |
860 KB |
Output is correct |
39 |
Correct |
2 ms |
1372 KB |
Output is correct |
40 |
Correct |
1 ms |
600 KB |
Output is correct |
41 |
Correct |
1 ms |
604 KB |
Output is correct |
42 |
Correct |
1 ms |
604 KB |
Output is correct |
43 |
Correct |
170 ms |
61704 KB |
Output is correct |
44 |
Correct |
203 ms |
92024 KB |
Output is correct |
45 |
Correct |
137 ms |
36092 KB |
Output is correct |
46 |
Correct |
145 ms |
36064 KB |
Output is correct |
47 |
Correct |
163 ms |
36268 KB |
Output is correct |
48 |
Correct |
180 ms |
77600 KB |
Output is correct |
49 |
Correct |
174 ms |
84052 KB |
Output is correct |
50 |
Correct |
132 ms |
31944 KB |
Output is correct |
51 |
Correct |
110 ms |
36456 KB |
Output is correct |
52 |
Correct |
121 ms |
35948 KB |
Output is correct |
53 |
Correct |
241 ms |
93008 KB |
Output is correct |
54 |
Correct |
199 ms |
81664 KB |
Output is correct |
55 |
Correct |
69 ms |
29644 KB |
Output is correct |
56 |
Correct |
191 ms |
63276 KB |
Output is correct |
57 |
Correct |
137 ms |
37736 KB |
Output is correct |
58 |
Correct |
128 ms |
37716 KB |
Output is correct |
59 |
Correct |
173 ms |
37204 KB |
Output is correct |
60 |
Correct |
128 ms |
37052 KB |
Output is correct |