Submission #999442

#TimeUsernameProblemLanguageResultExecution timeMemory
999442yoav_sStar Trek (CEOI20_startrek)C++17
78 / 100
1090 ms93184 KiB
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef vector<ll> v; typedef vector<v> vv; typedef vector<vv> vvv; typedef pair<ll,ll> p; typedef vector<p> vp; typedef vector<vp> vvp; typedef vector<vvp> vvvp; typedef pair<ll, p> tri; typedef vector<tri> vtri; typedef vector<vtri> vvtri; typedef vector<vvtri> vvvtri; typedef vector<bool> vb; typedef vector<vb> vvb; typedef vector<vvb> vvvb; #define f first #define s second #define pb push_back #define eb emplace_back #define all(v) (v).begin(),(v).end() const ll INF = 1e18; const ll mod = 1e9 + 7; ll modPow(ll a, ll b) { if (b == 0) return 1; ll res = modPow(a, b / 2); res = (res * res) % mod; if (b % 2 == 1) res = (res * a) % mod; return res; } void getWinningStates(ll i, vv &graph, vb &winning, vb &visited, v &losingChildrenCount, vector<set<ll>> &losingChildren) { if (visited[i]) return; visited[i] = true; for (ll x : graph[i]) { if (!visited[x]) { getWinningStates(x, graph, winning, visited, losingChildrenCount, losingChildren); if (!winning[x]) { winning[i] = true; losingChildrenCount[i]++; losingChildren[i].insert(x); } } } } ll getSubtreeSize(ll i, vv &graph, v &res) { if (res[i] != 0) return 0; res[i] = 1; for (ll x : graph[i]) res[i] += getSubtreeSize(x, graph, res); return res[i]; } p operator+(p a, p b) { return p(a.f + b.f, a.s + b.s); } void operator+=(p &a, p b) { a.f += b.f; a.s += b.s; } p operator-(p a, p b) { return p(a.f - b.f, a.s - b.s); } void operator-=(p &a, p b) { a.f -= b.f; a.s -= b.s; } p operator%(p a, ll mod) { return p(((a.f % mod) + mod) % mod, ((a.s % mod) + mod) % mod); } void operator%=(p &a, ll mod) { a = a % mod; } void solve(ll i, vv &graph, vb &isWinning, vvp &res, vb &visited, v &subtreeSize, vvp &childrenS) { ll N = graph.size(); visited[i] = true; for (ll x : graph[i]) if (!visited[x]) { solve(x, graph, isWinning, res, visited, subtreeSize, childrenS); childrenS[i][0] += res[x][0]; childrenS[i][1] += res[x][1]; } ll losingChildren = 0; ll losingChild; for (ll x : graph[i]) { if (!visited[x] && !isWinning[x]) { losingChildren++; losingChild = x; } } if (losingChildren == 0) { res[i][1] = p(N, mod - 1) + childrenS[i][0]; res[i][0] = p(0, 1) + childrenS[i][1]; res[i][0] %= mod; } else if (losingChildren == 1) { res[i][1] = p((N * (subtreeSize[i] - subtreeSize[losingChild])) % mod, 0); res[i][1] += res[losingChild][0]; res[i][0] = res[losingChild][1]; } else { res[i][0] = p(0, 0); res[i][1] = p((N * subtreeSize[i]) % mod, 0); } res[i][1] %= mod; visited[i] = false; } void rerootSolve(ll i, ll par, vv &graph, vvp &res, vb &visited, v &subtreeSize, vvp &childrenS, vvp &curRootDP, vb &isWinningAsRoot, v &losingChildrenCount, vector<set<ll>> &losingChildren) { ll N = graph.size(); if (visited[i]) return; visited[i] = true; vp parChildrenS(2),myChildrenS(2),parCurRootDP(2),myCurRootDP(2); if (par != -1) { copy(all(childrenS[par]), parChildrenS.begin()); copy(all(childrenS[i]), myChildrenS.begin()); copy(all(curRootDP[par]), parCurRootDP.begin()); copy(all(curRootDP[i]), myCurRootDP.begin()); if (losingChildrenCount[i] == 0) { losingChildrenCount[par]--; losingChildren[par].erase(i); } if (losingChildrenCount[par] == 0) { losingChildrenCount[i]++; losingChildren[i].insert(par); } subtreeSize[par] -= subtreeSize[i]; subtreeSize[i] += subtreeSize[par]; childrenS[par][0] -= curRootDP[i][0]; childrenS[par][1] -= curRootDP[i][1]; childrenS[par][1] %= mod; childrenS[par][0] %= mod; if (losingChildrenCount[par] == 0) { curRootDP[par][1] = p(N, mod - 1) + childrenS[par][0]; curRootDP[par][0] = p(0, 1) + childrenS[par][1]; curRootDP[par][0] %= mod; } else if (losingChildrenCount[par] == 1) { ll losingChild = *losingChildren[par].begin(); curRootDP[par][1] = p((N * (subtreeSize[par] - subtreeSize[losingChild])) % mod, 0); curRootDP[par][1] += curRootDP[losingChild][0]; curRootDP[par][0] = curRootDP[losingChild][1]; } else { curRootDP[par][0] = p(0, 0); curRootDP[par][1] = p((N * subtreeSize[par]) % mod, 0); } curRootDP[par][1] %= mod; childrenS[i][0] += curRootDP[par][0]; childrenS[i][1] += curRootDP[par][1]; if (losingChildrenCount[i] == 0) { curRootDP[i][1] = p(N, mod - 1) + childrenS[i][0]; curRootDP[i][0] = p(0, 1) + childrenS[i][1]; curRootDP[i][0] %= mod; } else if (losingChildrenCount[i] == 1) { ll losingChild = *losingChildren[i].begin(); curRootDP[i][1] = p((N * (subtreeSize[i] - subtreeSize[losingChild])) % mod, 0); curRootDP[i][1] += curRootDP[losingChild][0]; curRootDP[i][0] = curRootDP[losingChild][1]; } else { curRootDP[i][0] = p(0, 0); curRootDP[i][1] = p((N * subtreeSize[i]) % mod, 0); } curRootDP[i][1] %= mod; } isWinningAsRoot[i] = losingChildrenCount[i] > 0; res[i][0] = curRootDP[i][0]; res[i][1] = curRootDP[i][1]; for (ll x : graph[i]) { rerootSolve(x, i, graph, res, visited, subtreeSize, childrenS, curRootDP, isWinningAsRoot, losingChildrenCount, losingChildren);; } if (par != -1) { if (losingChildrenCount[par] == 0) { losingChildrenCount[i]--; losingChildren[i].erase(par); } if (losingChildrenCount[i] == 0) { losingChildrenCount[par]++; losingChildren[par].insert(i); } subtreeSize[i] -= subtreeSize[par]; subtreeSize[par] += subtreeSize[i]; childrenS[par] = parChildrenS; childrenS[i] = myChildrenS; curRootDP[par] = parCurRootDP; curRootDP[i] = myCurRootDP; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long N, D; cin >> N >> D; vv graph(N); for (ll i= 0; i < N - 1; i++) { long long a, b; cin >> a >> b; a--; b--; graph[a].pb(b); graph[b].pb(a); } vvp amountOfWaysToGet(N, vp(2, p(0, 0))); vb isWinning(N), visited(N, false); v losingChildrenCount(N, 0); vector<set<ll>> losingChildren(N); getWinningStates(0, graph, isWinning, visited, losingChildrenCount, losingChildren); v subtreeSize(N, 0); getSubtreeSize(0, graph, subtreeSize); vvp dp(N, vp(2, p(0, 0))); visited = vb(N, false); vvp childrenS(N, vp(2, p(0, 0))); solve(0, graph, isWinning, dp, visited, subtreeSize, childrenS); vb winAsRoot(N, false); visited = vb(N, false); rerootSolve(0, -1, graph, amountOfWaysToGet, visited, subtreeSize, childrenS, dp, winAsRoot, losingChildrenCount, losingChildren); ll winningCount = 0, losingCount = 0; for (auto x : winAsRoot) { if (x) winningCount++; } p sum = p(0, 0); for (auto x : amountOfWaysToGet) sum += x[1]; sum %= mod; ll weighted = winningCount, absolute = 1; for (ll i = 1; i < D; i++) { weighted = sum.f * absolute + sum.s * weighted; weighted %= mod; absolute *= (N * N) % mod; absolute %= mod; } cout << (weighted * amountOfWaysToGet[0][1].s + absolute * amountOfWaysToGet[0][1].f) % mod << "\n"; return 0; }

Compilation message (stderr)

startrek.cpp: In function 'int main()':
startrek.cpp:264:26: warning: unused variable 'losingCount' [-Wunused-variable]
  264 |     ll winningCount = 0, losingCount = 0;
      |                          ^~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...