Submission #997656

# Submission time Handle Problem Language Result Execution time Memory
997656 2024-06-12T16:26:33 Z RaresFelix Parking (CEOI22_parking) C++17
100 / 100
489 ms 66564 KB
#include <bits/stdc++.h>

using namespace std;

using vi = vector<int>;
using ii = pair<int, int>;

int main() {
    cin.tie(0);
    int n, m;
    cin >> n >> m;
    vector<set<int> > L(n), G(n);

    vi A(2 * m, -1), P(2 * n, -1);
    set<int> LinLib;

    for(int i = 0; i < 2 * m; ++i) {
        int v;
        cin >> v;
        if(!v) continue;
        --v;
        v *= 2;
        if(P[v] != -1) ++v;
        P[v] = i;
        A[i] = v;
    }
    //set<int> Scoase;
    vi InDeg(n, 0), OutDeg(n, 0);
    for(int i = 0; i < m; ++i) {
        if(A[2 * i] == -1) LinLib.insert(i);
        if(A[2 * i + 1] != -1) {
            if(A[2 * i] == A[2 * i + 1]) continue;
            L[A[2 * i] / 2].insert(A[2 * i + 1] / 2);
            G[A[2 * i + 1] / 2].insert(A[2 * i] / 2);
            ++OutDeg[A[2 * i] / 2];
            ++InDeg[A[2 * i + 1] / 2];
        }
    }
    set<int> S[3][3]; /// culori dupa indeg/ outdeg
    for(int i = 0; i < n; ++i)
        S[InDeg[i]][OutDeg[i]].insert(i);

    vector<vi> LMono, LBi;
    vector<vi> Cicluri;

    vi viz(n, 0);
    function<int(int, int)> dfs0 = [&](int u, int p) {
        if(viz[u] == 1)
            return u;
        viz[u] = 1;
        for(auto it : L[u])
            if(it != p) return dfs0(it, u);
        for(auto it : G[u])
            if(it != p) return dfs0(it, u);
        return u;
    };

    function<void(int, int, bool&, int&, vi&)> dfscomp = [&](int u, int p, bool &cyc, int& dir, vi &comp) {
        if(viz[u] == 2) {
            cyc = 1;
            return;
        }
        viz[u] = 2;
        dir = max(dir, InDeg[u]);
        comp.push_back(u);
        int nr = 0;
        for(auto it : L[u])
            if(it != p) {
                dfscomp(it, u, cyc, dir, comp);
            } else ++nr;
        for(auto it : G[u])
            if(it != p) {
                dfscomp(it, u, cyc, dir, comp);
            } else ++nr;
        if(nr == 2) cyc = 1;
    };
    for(int i = 0; i < n; ++i) {
        if(!viz[i]) {
            int u = dfs0(i, -1), dir = 0;
            bool cyc = 0;
            vi comp;
            dfscomp(u, -1, cyc, dir, comp);
            if(cyc) Cicluri.push_back(comp);
            else {
                if(dir == 2) LBi.push_back(comp);
                else LMono.push_back(comp);
            }
        }
    }
    
    int ok = 1;

    vector<ii> Sol;

    auto move = [&](int from, int to) {
        Sol.push_back({from, to});
        int pf = 2 * from, pdest = 2 * to;
        if(A[pf + 1] != -1) {
            L[A[pf] / 2].erase(A[pf + 1] / 2);
            G[A[pf + 1] / 2].erase(A[pf] / 2);
            --OutDeg[A[pf] / 2];
            --InDeg[A[pf + 1] / 2];
            ++pf;
        } else LinLib.insert(from);
        if(A[pdest] != -1) {
            L[A[pdest] / 2].insert(A[pf] / 2);
            G[A[pf] / 2].insert(A[pdest] / 2);
            ++InDeg[A[pf] / 2];
            ++OutDeg[A[pdest] / 2];
            ++pdest;
        } else LinLib.erase(to);
        A[pdest] = A[pf];
        A[pf] = -1;
        P[A[pdest]] = pdest;
    };

    auto scotdeg2 = [&](int u) {
        int liber;
        if(LinLib.empty()) {
            cout << "-1\n";
            exit(0);
        }
        liber = *LinLib.begin();
        move(P[2 * u] / 2, liber);
        move(P[2 * u + 1] / 2, liber);
    };

    auto solveSir = [&](vi S) {
        if(S.empty()) return;
        auto singur = [&](int u) {
            if(P[2 * u] / 2 != P[2 * u + 1] / 2)
                move(P[2 * u] / 2, P[2 * u + 1] / 2);
        };
        if(S.size() == 1) {
            int u = S[0];
            singur(u);
            return;
        }
        deque<int> D;
        for(auto it : S) D.push_back(it);

        auto scoate = [&](int u) {
            int a = P[2 * u], b = P[2 * u + 1];
            if(b & 1) swap(a, b);
            move(a / 2, b / 2);
        };
        while(!D.empty()) {
            if(InDeg[D.back()] == 0 && OutDeg[D.back()] == 0) {
                singur(D.back());
                D.pop_back();
                continue;
            }
            if(InDeg[D.front()] == 1) {
                scoate(D.front());
                D.pop_front();
                continue;
            } 
            if(InDeg[D.back()] == 1) {
                scoate(D.back());
                D.pop_back();
                continue;
            } 
            int u = D.back(), p = -1;
            vi Acum;
            while(InDeg[u] != 2) {
                Acum.push_back(D.back());
                D.pop_back();
                u = D.back();
            }
            //il scot pe u acum
            scotdeg2(u);
            D.pop_back();
            
            reverse(Acum.begin(), Acum.end());
            for(int i = 0; i + 1 < Acum.size(); ++i)
                scoate(Acum[i]);
            if(!Acum.empty())
                singur(Acum.back());
            else { 
                singur(D.back()); 
                D.pop_back();
            }
        }
    };

    auto solveCyc = [&](vi C) {
        if(C.size() == 1) {
            return; /// e deja bun daca e identificat ca ciclu
        }
        deque<int> D;
        for(auto it : C)
            D.push_back(it);
        for(int i = 0; i < n; ++i) {
            if(InDeg[D.back()] == 2) {
                scotdeg2(D.back());
                D.pop_back();
                vi S;
                for(auto it : D) S.push_back(it);
                solveSir(S);
                return;
            }
            D.push_front(D.back());
            D.pop_back();
        }
        ///e full ciclic
        int u = D.back(), a = P[2 * u], b = P[2 * u + 1];
        if(b & 1) swap(a, b);
        int liber;
        if(LinLib.empty()) {
            cout << "-1\n";
            exit(0);
        }
        liber = *LinLib.begin();
        int urm = A[a - 1];
        move(a / 2, liber);
        if(D.front() == urm) {
            D.push_back(D.front());
            D.pop_front();
        }
        else {
            D.push_front(D.back());
            D.pop_back();
        }
        vi S;
        for(auto it : D) S.push_back(it);
        solveSir(S);
        return;
    };
    
    for(auto it : LMono) solveSir(it);
    for(auto it : LBi) solveSir(it);
    for(auto it : Cicluri) solveCyc(it);

    if(!ok) {
        cout << "-1\n";
        return 0;
    }
    cout << Sol.size() << "\n";
    for(auto [a, b] : Sol)
        cout << a + 1 << " " << b + 1 << "\n";
    return 0;
}

Compilation message

Main.cpp: In lambda function:
Main.cpp:175:34: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  175 |             for(int i = 0; i + 1 < Acum.size(); ++i)
      |                            ~~~~~~^~~~~~~~~~~~~
Main.cpp:163:31: warning: unused variable 'p' [-Wunused-variable]
  163 |             int u = D.back(), p = -1;
      |                               ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 148 ms 32516 KB Output is correct
2 Correct 153 ms 36868 KB Output is correct
3 Correct 139 ms 27144 KB Output is correct
4 Correct 98 ms 25860 KB Output is correct
5 Correct 147 ms 36652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 2 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 2 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 370 ms 61144 KB Output is correct
11 Correct 219 ms 65540 KB Output is correct
12 Correct 181 ms 54480 KB Output is correct
13 Correct 448 ms 59072 KB Output is correct
14 Correct 215 ms 56144 KB Output is correct
15 Correct 188 ms 54004 KB Output is correct
16 Correct 330 ms 61116 KB Output is correct
17 Correct 192 ms 53584 KB Output is correct
18 Correct 394 ms 60608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 860 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 148 ms 32516 KB Output is correct
12 Correct 153 ms 36868 KB Output is correct
13 Correct 139 ms 27144 KB Output is correct
14 Correct 98 ms 25860 KB Output is correct
15 Correct 147 ms 36652 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 1 ms 600 KB Output is correct
22 Correct 2 ms 600 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 370 ms 61144 KB Output is correct
26 Correct 219 ms 65540 KB Output is correct
27 Correct 181 ms 54480 KB Output is correct
28 Correct 448 ms 59072 KB Output is correct
29 Correct 215 ms 56144 KB Output is correct
30 Correct 188 ms 54004 KB Output is correct
31 Correct 330 ms 61116 KB Output is correct
32 Correct 192 ms 53584 KB Output is correct
33 Correct 394 ms 60608 KB Output is correct
34 Correct 2 ms 604 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 1 ms 604 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 604 KB Output is correct
41 Correct 1 ms 600 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 860 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 1 ms 604 KB Output is correct
48 Correct 1 ms 600 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 1 ms 600 KB Output is correct
51 Correct 1 ms 604 KB Output is correct
52 Correct 1 ms 604 KB Output is correct
53 Correct 1 ms 604 KB Output is correct
54 Correct 1 ms 604 KB Output is correct
55 Correct 1 ms 604 KB Output is correct
56 Correct 1 ms 604 KB Output is correct
57 Correct 1 ms 604 KB Output is correct
58 Correct 317 ms 55424 KB Output is correct
59 Correct 334 ms 60416 KB Output is correct
60 Correct 258 ms 50748 KB Output is correct
61 Correct 325 ms 56256 KB Output is correct
62 Correct 227 ms 66564 KB Output is correct
63 Correct 290 ms 57860 KB Output is correct
64 Correct 185 ms 55632 KB Output is correct
65 Correct 327 ms 58236 KB Output is correct
66 Correct 354 ms 60828 KB Output is correct
67 Correct 164 ms 53332 KB Output is correct
68 Correct 489 ms 59844 KB Output is correct
69 Correct 462 ms 58052 KB Output is correct
70 Correct 224 ms 53584 KB Output is correct
71 Correct 191 ms 55640 KB Output is correct
72 Correct 191 ms 54712 KB Output is correct
73 Correct 353 ms 61104 KB Output is correct
74 Correct 181 ms 54096 KB Output is correct
75 Correct 308 ms 59356 KB Output is correct
76 Correct 364 ms 60300 KB Output is correct
77 Correct 320 ms 58564 KB Output is correct
78 Correct 181 ms 54864 KB Output is correct
79 Correct 323 ms 58376 KB Output is correct
80 Correct 169 ms 53844 KB Output is correct
81 Correct 399 ms 59424 KB Output is correct