# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
997362 |
2024-06-12T07:45:51 Z |
saddd |
Train (APIO24_train) |
C++17 |
|
894 ms |
182560 KB |
#include<bits/stdc++.h>
#include<fstream>
using namespace std;
#define sz(a) (int)a.size()
#define ALL(v) v.begin(), v.end()
#define ALLR(v) v.rbegin(), v.rend()
#define ll long long
#define pb push_back
#define forr(i, a, b) for(int i = a; i < b; i++)
#define dorr(i, a, b) for(int i = a; i >= b; i--)
#define ld long double
#define vt vector
#include<fstream>
#define fi first
#define se second
#define pll pair<ll, ll>
#define pii pair<int, int>
#define mpp make_pair
const ld PI = 3.14159265359, prec = 1e-9;;
//using u128 = __uint128_t;
//const int x[4] = {1, 0, -1, 0};
//const int y[4] = {0, -1, 0, 1};
const ll mod = 1000003, pr = 31;
const int mxn = 2e5 + 5, mxq = 1e5 + 5, sq = 500, mxv = 5e4 + 1;
//const int base = (1 <<18);
const ll inf = 1e17 + 5, neg = -69420, inf2 = 1e14;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
// have fun!
#include "train.h"
#include <vector>
struct CC{
vt<int>comp;
void init(bool sign ){
sort(ALL(comp));
if(sign){
comp.resize(unique(ALL(comp)) - comp.begin());
}
}
int findl(int x){
return(lower_bound(ALL(comp), x) - comp.begin() + 1);
}
int findr(int x){
return(upper_bound(ALL(comp), x) - comp.begin() + 1);
}
void add(int x){
comp.pb(x);
}
};
CC cmpl, cmpr;
int lson[20 * mxn + 1], rson[20 * mxn + 1], sm[20 * mxn + 1], root[mxn + 1], cnt = 0;
struct E{
ll x, y, a, b, c;
bool operator <(const E &other){
return(a < other.a);
}
};
int n, m, w;
vt<E>edge;
vt<pll>food;
vt<int>comp;
deque<pii>mn[mxn + 1];
bool cmp(int a, int b){
return(edge[a].b < edge[b].b);
}
ll t[mxn + 1], dp[mxn + 1];
void build(int nd, int l, int r){
if(l == r)return;
int mid = (l + r) >> 1;
lson[nd] = ++cnt; rson[nd] = ++cnt;
build(lson[nd], l, mid); build(rson[nd], mid + 1, r);
}
void upd(int nd, int pre, int l, int r, int id){
if(l == r){
sm[nd] = sm[pre] + 1;
return;
}
int mid = (l + r) >> 1;
if(id <= mid){
lson[nd] = ++cnt; rson[nd] = rson[pre];
upd(lson[nd], lson[pre], l, mid, id);
}else{
lson[nd] = lson[pre];
rson[nd] = ++cnt; upd(rson[nd], rson[pre], mid + 1, r, id);
}
sm[nd] = sm[lson[nd]] + sm[rson[nd]];
}
int get(int nd, int pre, int l, int r, int ql, int qr){
if(ql > r || qr < l)return(0);
if(ql <= l && qr >= r)return(sm[nd] - sm[pre]);
int mid = (l + r) >> 1;
return(max(0, get(lson[nd], lson[pre], l, mid, ql, qr) + get(rson[nd], rson[pre], mid + 1, r, ql, qr)));
}
ll getval(int ide, int rp){
int lx = cmpl.findr(edge[ide].b) - 1, rx = cmpl.findr(cmpr.comp[rp - 1]) - 1;
int ly = cmpr.findr(edge[ide].b), ry = rp;
//cout << lx << " " << rx << " " << ly << " " << ry << "\n";
if(lx > rx || ly > ry)return(dp[ide]);
ll ans = dp[ide] + get(root[rx], root[lx], 1, sz(cmpr.comp), ly, ry) * t[edge[ide].y];
//cout << ans << " ";
return(ans);
}
ll solve(){
sort(ALL(edge)); sort(ALL(comp), cmp); sort(ALL(food));
cmpr.add(0);
for(int i = 0; i < sz(food); i++){
cmpl.add(food[i].fi); cmpr.add(food[i].se);
}
cmpl.init(0); cmpr.init(1);
root[0] = ++cnt;
build(root[0], 1, sz(cmpr.comp));
int rp = 0;
for(int i = 1; i <= sz(food); i++){
root[i] = ++cnt;
upd(root[i], root[i - 1], 1, sz(cmpr.comp), cmpr.findl(food[i - 1].se));
}
rp = 0;
ll ans = inf;
mn[0].pb(mpp(m, 1));
for(int i = 0; i < m; i++){
while(rp < sz(comp) && edge[comp[rp]].b <= edge[i].a){
if(dp[comp[rp]] == inf){
rp++; continue;
}
auto [x, y, a, b, c] = edge[comp[rp]];
while(sz(mn[y])){
auto [ide, idr] = mn[y].back();
if(getval(ide, idr) >= getval(comp[rp], idr)){
mn[y].pop_back();
}else{
break;
}
}
if(!sz(mn[y])){
mn[y].pb(mpp(comp[rp], 1));
}else{
auto [ide, idr] = mn[y].back();
int l = idr + 1, r = sz(cmpr.comp), ans = -1;
while(l <= r){
int mid = (l + r) >> 1;
if(getval(comp[rp], mid) <= getval(ide, mid)){
ans = mid; r = mid - 1;
}else{
l = mid + 1;
}
}
if(ans != -1)mn[y].pb(mpp(comp[rp], ans));
}
rp++;
}
auto [x, y, a, b, c] = edge[i];
int id = lower_bound(ALL(food), mpp(a, 1LL * -1)) - food.begin() - 1;
if(sz(mn[x]) == 0)dp[i] = inf;
else{
int idr = cmpr.findl(a) - 1;
while(sz(mn[x]) >= 2 && mn[x][1].se <= idr)mn[x].pop_front();
dp[i] = getval(mn[x].front().fi, idr) + c;
//cout << c << " ";
}
if(y == n - 1){
int idl = cmpl.findr(edge[i].b) - 1, idr = cmpr.findr(edge[i].b);
ll cnt = get(root[sz(cmpl.comp)], root[idl], 1, sz(cmpr.comp), idr, sz(cmpr.comp));
ans = min(ans, dp[i] + cnt * t[n - 1]);
}
//cout << x << " " << y << " " << a << " " << b << " " << c << " " << dp[i] << "\n";
}
if(ans == inf)ans = -1;
return(ans);
}
long long solve(int N, int M, int W, std::vector<int> T, std::vector<int> X, std::vector<int> Y,
std::vector<int> A, std::vector<int> B, std::vector<int> C, std::vector<int> L,
std::vector<int> R) {
edge.clear(); food.clear(); comp.clear();
n = N; m = M; w = W;
for(int i = 0; i < n; i++)t[i] = T[i];
for(int i = 0; i < m; i++){
edge.pb({X[i], Y[i], A[i], B[i], C[i]}); comp.pb(i);
}
for(int i = 0; i < w; i++){
food.pb(mpp(L[i], R[i]));
}
return(solve());
}
Compilation message
train.cpp: In function 'long long int solve()':
train.cpp:156:13: warning: unused variable 'id' [-Wunused-variable]
156 | int id = lower_bound(ALL(food), mpp(a, 1LL * -1)) - food.begin() - 1;
| ^~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
56 ms |
143960 KB |
Correct. |
2 |
Correct |
57 ms |
143952 KB |
Correct. |
3 |
Correct |
56 ms |
143956 KB |
Correct. |
4 |
Correct |
57 ms |
143956 KB |
Correct. |
5 |
Correct |
56 ms |
139924 KB |
Correct. |
6 |
Correct |
58 ms |
143956 KB |
Correct. |
7 |
Correct |
57 ms |
143952 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
122 ms |
150228 KB |
Correct. |
2 |
Correct |
133 ms |
151504 KB |
Correct. |
3 |
Correct |
56 ms |
139856 KB |
Correct. |
4 |
Correct |
61 ms |
140624 KB |
Correct. |
5 |
Correct |
54 ms |
139856 KB |
Correct. |
6 |
Correct |
106 ms |
150996 KB |
Correct. |
7 |
Correct |
50 ms |
139748 KB |
Correct. |
8 |
Correct |
122 ms |
150484 KB |
Correct. |
9 |
Correct |
150 ms |
151124 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
122 ms |
150228 KB |
Correct. |
2 |
Correct |
133 ms |
151504 KB |
Correct. |
3 |
Correct |
56 ms |
139856 KB |
Correct. |
4 |
Correct |
61 ms |
140624 KB |
Correct. |
5 |
Correct |
54 ms |
139856 KB |
Correct. |
6 |
Correct |
106 ms |
150996 KB |
Correct. |
7 |
Correct |
50 ms |
139748 KB |
Correct. |
8 |
Correct |
122 ms |
150484 KB |
Correct. |
9 |
Correct |
150 ms |
151124 KB |
Correct. |
10 |
Correct |
594 ms |
180176 KB |
Correct. |
11 |
Correct |
377 ms |
181960 KB |
Correct. |
12 |
Correct |
59 ms |
140628 KB |
Correct. |
13 |
Correct |
56 ms |
139856 KB |
Correct. |
14 |
Correct |
706 ms |
180376 KB |
Correct. |
15 |
Correct |
399 ms |
181596 KB |
Correct. |
16 |
Correct |
705 ms |
180172 KB |
Correct. |
17 |
Correct |
810 ms |
181192 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
56 ms |
143960 KB |
Correct. |
2 |
Correct |
57 ms |
143952 KB |
Correct. |
3 |
Correct |
56 ms |
143956 KB |
Correct. |
4 |
Correct |
57 ms |
143956 KB |
Correct. |
5 |
Correct |
56 ms |
139924 KB |
Correct. |
6 |
Correct |
58 ms |
143956 KB |
Correct. |
7 |
Correct |
57 ms |
143952 KB |
Correct. |
8 |
Correct |
122 ms |
150228 KB |
Correct. |
9 |
Correct |
133 ms |
151504 KB |
Correct. |
10 |
Correct |
56 ms |
139856 KB |
Correct. |
11 |
Correct |
61 ms |
140624 KB |
Correct. |
12 |
Correct |
54 ms |
139856 KB |
Correct. |
13 |
Correct |
106 ms |
150996 KB |
Correct. |
14 |
Correct |
50 ms |
139748 KB |
Correct. |
15 |
Correct |
122 ms |
150484 KB |
Correct. |
16 |
Correct |
150 ms |
151124 KB |
Correct. |
17 |
Correct |
594 ms |
180176 KB |
Correct. |
18 |
Correct |
377 ms |
181960 KB |
Correct. |
19 |
Correct |
59 ms |
140628 KB |
Correct. |
20 |
Correct |
56 ms |
139856 KB |
Correct. |
21 |
Correct |
706 ms |
180376 KB |
Correct. |
22 |
Correct |
399 ms |
181596 KB |
Correct. |
23 |
Correct |
705 ms |
180172 KB |
Correct. |
24 |
Correct |
810 ms |
181192 KB |
Correct. |
25 |
Correct |
395 ms |
181416 KB |
Correct. |
26 |
Correct |
409 ms |
181852 KB |
Correct. |
27 |
Correct |
419 ms |
181704 KB |
Correct. |
28 |
Correct |
465 ms |
182560 KB |
Correct. |
29 |
Correct |
573 ms |
180872 KB |
Correct. |
30 |
Correct |
594 ms |
181196 KB |
Correct. |
31 |
Correct |
622 ms |
180692 KB |
Correct. |
32 |
Correct |
639 ms |
180220 KB |
Correct. |
33 |
Correct |
703 ms |
180088 KB |
Correct. |
34 |
Correct |
743 ms |
180680 KB |
Correct. |
35 |
Correct |
894 ms |
180680 KB |
Correct. |
36 |
Correct |
556 ms |
180176 KB |
Correct. |
37 |
Correct |
389 ms |
180916 KB |
Correct. |
38 |
Correct |
691 ms |
180936 KB |
Correct. |
39 |
Correct |
719 ms |
180168 KB |
Correct. |
40 |
Correct |
406 ms |
180936 KB |
Correct. |
41 |
Correct |
171 ms |
177612 KB |
Correct. |
42 |
Correct |
155 ms |
176132 KB |
Correct. |
43 |
Correct |
515 ms |
176588 KB |
Correct. |
44 |
Correct |
403 ms |
180812 KB |
Correct. |
45 |
Correct |
431 ms |
181000 KB |
Correct. |
46 |
Correct |
389 ms |
181448 KB |
Correct. |
47 |
Correct |
166 ms |
160464 KB |
Correct. |
48 |
Correct |
151 ms |
160644 KB |
Correct. |
49 |
Correct |
145 ms |
160464 KB |
Correct. |
50 |
Correct |
154 ms |
161088 KB |
Correct. |
51 |
Correct |
155 ms |
160464 KB |
Correct. |
52 |
Correct |
154 ms |
160864 KB |
Correct. |