Submission #995391

# Submission time Handle Problem Language Result Execution time Memory
995391 2024-06-09T02:47:52 Z asdfgrace Stranded Far From Home (BOI22_island) C++17
10 / 100
150 ms 37840 KB
#include <bits/stdc++.h>
using namespace std;

#define dbg(x) //x
#define prt(x) dbg(cerr << x)
#define pv(x) prt(#x << " = " << x << '\n')
#define parr(x) dbg(prt(#x << " = "); for (auto y : x) prt(y << ' '); prt('\n'));
#define parr2d(x) dbg(prt(#x << " = \n"); for (auto y : x) {parr(y)}; prt('\n'));

/*
which ties are possible?
a can convince b if sum(a) > sum(b)
note that nodes are weighted
note that the tie with the strictly least number can't be 1 in the end
one with strictly most can be 1 in the end
how to greedily make 1 the largest?
dfs from the node
and keep adding the smallest adj greedily
and make sure that the size of this color's comp is greater than any other color's comp

subtask 1: brute force
subtask 2: tree; every node's parent has greater value than self
you can always get everything in your own subtree
go to the root
and for every node on the path to the root
you also absorb the parent
and everything else in the parent's subtree - note that that is guaranteed to be possible
if you've already absorbed the parent
this dp cond is checkable as you go up the tree
(this node's subtree sum >= parent's value?)
all the values to the root have to be true
for a node to work
subtask 3: just some weird stuff with set ig
*/

int main() {
  ios::sync_with_stdio(0); cin.tie(0);
  int n, m;
  cin >> n >> m;
  vector<long long> s(n);
  for (int i = 0; i < n; i++) {
    cin >> s[i];
  }
  bool inc = false;
  for (int i = 0; i < n - 1; i++) {
    if (s[i + 1] > s[i]) {
      inc = true;
    }
  }
  bool dif1 = true;
  vector<vector<int>> edges(n);
  for (int i = 0; i < m; i++) {
    int x, y;
    cin >> x >> y;
    x--; y--;
    pv(x); pv(y); pv(abs(x - y));
    if (abs(x - y) > 1) dif1 = false;
    edges[x].push_back(y);
    edges[y].push_back(x);
  }
  pv(dif1);
  if (n <= 0 && m <= 2000) {
    for (int i = 0; i < n; i++) {
      vector<bool> vis(n, false);
      vis[i] = true;
      priority_queue<array<long long, 2>> que;
      que.push({-s[i], i});
      bool ok = true;
      long long tot = s[i];
      while (que.size()) {
        long long sz = -que.top()[0], node = que.top()[1];
        que.pop();
        if (sz > tot) {
          ok = false;
          break;
        }
        if (node != i) {
          tot += sz;
        }
        for (auto next : edges[node]) {
          if (!vis[next]) {
            vis[next] = true;
            que.push({-s[next], next});
          }
        }
      }
      cout << (ok ? 1 : 0);
    }
    cout << '\n';
  } else if (m == n - 1 && !inc) {
    vector<bool> ok(n, true);
    vector<long long> sum = s;
    function<void(int, int)> dfs1 = [&] (int node, int par) {
      for (auto next : edges[node]) {
        if (next != par) {
          dfs1(next, node);
          sum[node] += sum[next];
        }
      }
    };
    dfs1(0, 0);
    function<void(int, int)> dfs2 = [&] (int node, int par) {
      if (node != 0) {
        ok[node] = ok[par];
        if (s[par] > sum[node]) {
          ok[node] = false;
        }
      }
      for (auto next : edges[node]) {
        if (next != par) {
          dfs2(next, node);
        }
      }
    };
    dfs2(0, 0);
    for (int i = 0; i < n; i++) {
      cout << (ok[i] ? 1 : 0);
    }
    cout << '\n';
  } else if (dif1) {
    /*
    sum(l + 1, r - 1) < both a[l] and a[r]
    so for each l find the min r so that sum(l + 1, r - 1) >= a[l]
    for each r find the max l so that sum(l + 1, r - 1) >= a[r]
    if mxl[r] <= l && mnr[l] >= r, they work probably
    so probably find the l with the max mnr
    or just an increasing seq of them that you can binary search
    so you have n ranges of invalid elems
    probably use set to remove all the elems
    
    implies that if we start in [6, 6] we can't escape to the left OR right
    */
    vector<long long> ps = s;
    for (int i = 1; i < n; i++) {
      ps[i] += ps[i - 1];
    }
    vector<int> mxl(n), mnr(n);
    for (int i = 1; i < n; i++) {
      if (i > 0) mxl[i] = upper_bound(ps.begin(), ps.end(), ps[i - 1] - s[i]) - ps.begin();
      if (i < n - 1) mnr[i] = lower_bound(ps.begin(), ps.end(), ps[i + 1] + s[i]) - ps.begin();
    }
    vector<int> ord(n);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&] (int x, int y) {
      return mxl[x] > mxl[y];
    });
    int ptr = n - 1;
    vector<array<int, 2>> arr, bad;
    array<int, 2> tmp;
    for (int i = 0; i < n; i++) {
      pv(i); pv(ord[i]);
      while (ptr >= mxl[ord[i]]) {
        while (arr.size() && -arr.back()[0] <= mnr[ptr]) arr.pop_back();
        arr.push_back({-mnr[ptr], ptr});
        ptr--;
      }
      parr2d(arr);
      // GOAL: find the first >= i
      // ACTUAL GOAL: find the last <= -i
      tmp = {-mxl[ord[i]], (int) 1e9};
      int lb = upper_bound(arr.begin(), arr.end(), tmp) - arr.begin() - 1;
      if (lb != -1 && arr[lb][1] < ord[i] - 1) {
        bad.push_back({arr[lb][1] + 1, ord[i ] - 1});
        parr(bad.back());
      }
    }
    for (int i = n - 1; i > 0; i--) {
      if (s[i] > ps[i - 1]) {
        bad.push_back({0, i - 1});
        break;
      }
    }
    for (int i = 0; i < n - 1; i++) {
      if (s[i] > ps[n - 1] - ps[i]) {
        bad.push_back({i + 1, n - 1});
        break;
      }
    }
    parr2d(bad);
    set<int> st;
    for (int i = 0; i < n; i++) {
      st.insert(i);
    }
    for (auto [l, r] : bad) {
      auto it = st.lower_bound(l);
      while (it != st.end() && *it <= r) {
        st.erase(it);
        it = st.lower_bound(l);
      }
    }
    parr(mxl); parr(mnr); parr(ord);
    for (int i = 0; i < n; i++) {
      cout << (st.count(i) ? 1 : 0);
    }
    cout << '\n';
  }
}
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 344 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 460 KB Output is correct
3 Correct 81 ms 26592 KB Output is correct
4 Correct 74 ms 25172 KB Output is correct
5 Correct 77 ms 18516 KB Output is correct
6 Correct 83 ms 19024 KB Output is correct
7 Correct 79 ms 19024 KB Output is correct
8 Correct 88 ms 19280 KB Output is correct
9 Correct 71 ms 19024 KB Output is correct
10 Correct 53 ms 18876 KB Output is correct
11 Correct 57 ms 18888 KB Output is correct
12 Correct 77 ms 17916 KB Output is correct
13 Correct 80 ms 36428 KB Output is correct
14 Correct 77 ms 36432 KB Output is correct
15 Correct 92 ms 37840 KB Output is correct
16 Correct 69 ms 36688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Incorrect 150 ms 32392 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Incorrect 67 ms 17236 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 344 KB Output isn't correct
2 Halted 0 ms 0 KB -