Submission #990330

# Submission time Handle Problem Language Result Execution time Memory
990330 2024-05-30T08:24:42 Z four_specks Werewolf (IOI18_werewolf) C++17
100 / 100
400 ms 69992 KB
#include "werewolf.h"

#include <bits/stdc++.h>

using namespace std;

namespace {

template <typename Fun>
struct YCombinator {
  template <typename T>
  YCombinator(T &&_fun) : fun(forward<T>(_fun)) {}

  template <typename... Args>
  decltype(auto) operator()(Args &&...args) {
    return fun(ref(*this), forward<Args>(args)...);
  }

 private:
  Fun fun;
};

template <typename T>
YCombinator(T &&) -> YCombinator<decay_t<T>>;

template <typename S, typename Op = plus<S>>
struct FenwickTree {
  explicit FenwickTree(int _n = 0, S _e = S(), Op _op = Op()) : n(_n), e(_e), op(_op), tree(n + 1, e) {}

  S query(int p) const {
    S x = e;
    for (; p; p -= p & -p) {
      x = op(tree[p], x);
    }
    return x;
  }

  S query() const {
    return query(n);
  }

  void modify(int p, S x) {
    for (p++; p <= n; p += p & -p) {
      tree[p] = op(tree[p], x);
    }
  }

  int size() const {
    return n;
  }

 private:
  int n;
  S e;
  Op op;
  vector<S> tree;
};

}  // namespace

vector<int> check_validity(int N, vector<int> X, vector<int> Y, vector<int> S, vector<int> E, vector<int> L, vector<int> R) {
  int n = N;
  int m = (int)X.size();
  int q = (int)S.size();
  vector<int> a, b;
  vector<array<int, 2>> sub_a(q), sub_b(q);
  vector<vector<int>> qrys_l(n), qrys_r(n);
  for (int i = 0; i < q; i++) {
    qrys_l[L[i]].push_back(i);
    qrys_r[R[i]].push_back(i);
  }
  {
    vector<vector<int>> adj(n);
    for (int i = 0; i < m; i++) {
      int u = X[i];
      int v = Y[i];
      if (u > v) {
        swap(u, v);
      }
      adj[u].push_back(v);
    }
    vector<vector<int>> krt(2 * n);
    vector<int> node(q);
    vector<int> root(2 * n);
    iota(root.begin(), root.end(), 0);
    YCombinator get_root = [&](auto self, int u) -> int {
      return root[u] == u ? u : root[u] = self(root[u]);
    };
    for (int u = n - 1; u >= 0; u--) {
      int x = 2 * n - (u + 1);
      krt[x].push_back(u);
      root[u] = x;
      vector<int> ch;
      for (int v : adj[u]) {
        ch.push_back(get_root(v));
      }
      sort(ch.begin(), ch.end());
      ch.erase(unique(ch.begin(), ch.end()), ch.end());
      for (int y : ch) {
        krt[x].push_back(y);
        root[y] = x;
      }
      for (int i : qrys_l[u]) {
        node[i] = get_root(S[i]);
      }
    }
    vector<int> tin(2 * n), tout(2 * n);
    {
      int timer = 0;
      YCombinator([&](auto self, int x) -> void {
        tin[x] = timer;
        if (x < n) {
          a.push_back(x);
          timer++;
        }
        for (int y : krt[x]) {
          self(y);
        }
        tout[x] = timer;
      })(2 * n - 1);
    }
    for (int i = 0; i < q; i++) {
      sub_a[i] = {tin[node[i]], tout[node[i]]};
    }
  }
  {
    vector<vector<int>> adj(n);
    for (int i = 0; i < m; i++) {
      int u = X[i];
      int v = Y[i];
      if (u < v) {
        swap(u, v);
      }
      adj[u].push_back(v);
    }
    vector<vector<int>> krt(2 * n);
    vector<int> node(q);
    vector<int> root(2 * n);
    iota(root.begin(), root.end(), 0);
    YCombinator get_root = [&](auto self, int u) -> int {
      return root[u] == u ? u : root[u] = self(root[u]);
    };
    for (int u = 0; u < N; u++) {
      int x = n + u;
      krt[x].push_back(u);
      root[u] = x;
      vector<int> ch;
      for (int v : adj[u]) {
        ch.push_back(get_root(v));
      }
      sort(ch.begin(), ch.end());
      ch.erase(unique(ch.begin(), ch.end()), ch.end());
      for (int y : ch) {
        krt[x].push_back(y);
        root[y] = x;
      }
      for (int i : qrys_r[u]) {
        node[i] = get_root(E[i]);
      }
    }
    vector<int> tin(2 * n), tout(2 * n);
    {
      int timer = 0;
      YCombinator([&](auto self, int x) -> void {
        tin[x] = timer;
        if (x < n) {
          b.push_back(x);
          timer++;
        }
        for (int y : krt[x]) {
          self(y);
        }
        tout[x] = timer;
      })(2 * n - 1);
    }
    for (int i = 0; i < q; i++) {
      sub_b[i] = {tin[node[i]], tout[node[i]]};
    }
  }
  vector<int> ans(q);
  {
    vector<int> idx(n);
    for (int i = 0; i < n; i++) {
      idx[a[i]] = i;
    }
    vector<array<vector<int>, 2>> todo(n);
    for (int i = 0; i < q; i++) {
      todo[sub_b[i][0]][0].push_back(i);
      todo[sub_b[i][1] - 1][1].push_back(i);
    }
    FenwickTree<int> fenw(n);
    for (int i = 0; i < n; i++) {
      for (int j : todo[i][0]) {
        ans[j] -= fenw.query(sub_a[j][1]) - fenw.query(sub_a[j][0]);
      }
      fenw.modify(idx[b[i]], 1);
      for (int j : todo[i][1]) {
        ans[j] += fenw.query(sub_a[j][1]) - fenw.query(sub_a[j][0]);
      }
    }
  }
  for (int i = 0; i < q; i++) {
    if (ans[i] > 0) {
      ans[i] = 1;
    }
  }
  return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 4 ms 1368 KB Output is correct
11 Correct 4 ms 1224 KB Output is correct
12 Correct 4 ms 1360 KB Output is correct
13 Correct 4 ms 1360 KB Output is correct
14 Correct 4 ms 1484 KB Output is correct
15 Correct 4 ms 1372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 371 ms 60976 KB Output is correct
2 Correct 357 ms 63536 KB Output is correct
3 Correct 335 ms 62048 KB Output is correct
4 Correct 314 ms 61216 KB Output is correct
5 Correct 329 ms 61528 KB Output is correct
6 Correct 328 ms 61024 KB Output is correct
7 Correct 298 ms 58936 KB Output is correct
8 Correct 309 ms 63584 KB Output is correct
9 Correct 271 ms 60764 KB Output is correct
10 Correct 275 ms 60008 KB Output is correct
11 Correct 273 ms 60204 KB Output is correct
12 Correct 334 ms 60768 KB Output is correct
13 Correct 322 ms 66664 KB Output is correct
14 Correct 311 ms 66664 KB Output is correct
15 Correct 286 ms 66604 KB Output is correct
16 Correct 326 ms 66628 KB Output is correct
17 Correct 285 ms 58716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 4 ms 1368 KB Output is correct
11 Correct 4 ms 1224 KB Output is correct
12 Correct 4 ms 1360 KB Output is correct
13 Correct 4 ms 1360 KB Output is correct
14 Correct 4 ms 1484 KB Output is correct
15 Correct 4 ms 1372 KB Output is correct
16 Correct 371 ms 60976 KB Output is correct
17 Correct 357 ms 63536 KB Output is correct
18 Correct 335 ms 62048 KB Output is correct
19 Correct 314 ms 61216 KB Output is correct
20 Correct 329 ms 61528 KB Output is correct
21 Correct 328 ms 61024 KB Output is correct
22 Correct 298 ms 58936 KB Output is correct
23 Correct 309 ms 63584 KB Output is correct
24 Correct 271 ms 60764 KB Output is correct
25 Correct 275 ms 60008 KB Output is correct
26 Correct 273 ms 60204 KB Output is correct
27 Correct 334 ms 60768 KB Output is correct
28 Correct 322 ms 66664 KB Output is correct
29 Correct 311 ms 66664 KB Output is correct
30 Correct 286 ms 66604 KB Output is correct
31 Correct 326 ms 66628 KB Output is correct
32 Correct 285 ms 58716 KB Output is correct
33 Correct 368 ms 61572 KB Output is correct
34 Correct 153 ms 22808 KB Output is correct
35 Correct 377 ms 63336 KB Output is correct
36 Correct 335 ms 61524 KB Output is correct
37 Correct 400 ms 62880 KB Output is correct
38 Correct 344 ms 62048 KB Output is correct
39 Correct 360 ms 69992 KB Output is correct
40 Correct 342 ms 64328 KB Output is correct
41 Correct 351 ms 62304 KB Output is correct
42 Correct 286 ms 60484 KB Output is correct
43 Correct 379 ms 66364 KB Output is correct
44 Correct 322 ms 62820 KB Output is correct
45 Correct 304 ms 68988 KB Output is correct
46 Correct 279 ms 68972 KB Output is correct
47 Correct 314 ms 66660 KB Output is correct
48 Correct 329 ms 66664 KB Output is correct
49 Correct 345 ms 66720 KB Output is correct
50 Correct 307 ms 66600 KB Output is correct
51 Correct 349 ms 62844 KB Output is correct
52 Correct 347 ms 62564 KB Output is correct