Submission #987987

# Submission time Handle Problem Language Result Execution time Memory
987987 2024-05-23T20:07:44 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
202 ms 46244 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 7 ms 6488 KB Output is correct
3 Correct 4 ms 8536 KB Output is correct
4 Correct 5 ms 6492 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 7 ms 5708 KB Output is correct
7 Correct 7 ms 5592 KB Output is correct
8 Correct 4 ms 8420 KB Output is correct
9 Correct 3 ms 6136 KB Output is correct
10 Correct 7 ms 5584 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 5 ms 5212 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 7 ms 6492 KB Output is correct
15 Correct 5 ms 5416 KB Output is correct
16 Correct 4 ms 6492 KB Output is correct
17 Correct 5 ms 5592 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 5 ms 5468 KB Output is correct
20 Correct 5 ms 6492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 5 ms 5212 KB Output is correct
25 Correct 4 ms 5212 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 6520 KB Output is correct
28 Correct 4 ms 8536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 61 ms 26044 KB Output is correct
2 Correct 69 ms 25872 KB Output is correct
3 Correct 68 ms 25908 KB Output is correct
4 Correct 67 ms 25936 KB Output is correct
5 Correct 70 ms 15544 KB Output is correct
6 Correct 55 ms 14372 KB Output is correct
7 Correct 64 ms 22696 KB Output is correct
8 Correct 75 ms 22444 KB Output is correct
9 Correct 21 ms 6492 KB Output is correct
10 Correct 67 ms 23880 KB Output is correct
11 Correct 13 ms 8540 KB Output is correct
12 Correct 39 ms 7640 KB Output is correct
13 Correct 81 ms 25544 KB Output is correct
14 Correct 76 ms 22948 KB Output is correct
15 Correct 16 ms 6748 KB Output is correct
16 Correct 68 ms 25516 KB Output is correct
17 Correct 70 ms 22888 KB Output is correct
18 Correct 21 ms 7132 KB Output is correct
19 Correct 68 ms 25936 KB Output is correct
20 Correct 68 ms 26300 KB Output is correct
21 Correct 19 ms 5752 KB Output is correct
22 Correct 79 ms 14836 KB Output is correct
23 Correct 61 ms 25220 KB Output is correct
24 Correct 14 ms 6488 KB Output is correct
25 Correct 13 ms 5720 KB Output is correct
26 Correct 64 ms 17548 KB Output is correct
27 Correct 67 ms 15552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 7 ms 6488 KB Output is correct
3 Correct 4 ms 8536 KB Output is correct
4 Correct 5 ms 6492 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 7 ms 5708 KB Output is correct
7 Correct 7 ms 5592 KB Output is correct
8 Correct 4 ms 8420 KB Output is correct
9 Correct 3 ms 6136 KB Output is correct
10 Correct 7 ms 5584 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 5 ms 5212 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 7 ms 6492 KB Output is correct
15 Correct 5 ms 5416 KB Output is correct
16 Correct 4 ms 6492 KB Output is correct
17 Correct 5 ms 5592 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 5 ms 5468 KB Output is correct
20 Correct 5 ms 6492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 5 ms 5212 KB Output is correct
25 Correct 4 ms 5212 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 6520 KB Output is correct
28 Correct 4 ms 8536 KB Output is correct
29 Correct 61 ms 26044 KB Output is correct
30 Correct 69 ms 25872 KB Output is correct
31 Correct 68 ms 25908 KB Output is correct
32 Correct 67 ms 25936 KB Output is correct
33 Correct 70 ms 15544 KB Output is correct
34 Correct 55 ms 14372 KB Output is correct
35 Correct 64 ms 22696 KB Output is correct
36 Correct 75 ms 22444 KB Output is correct
37 Correct 21 ms 6492 KB Output is correct
38 Correct 67 ms 23880 KB Output is correct
39 Correct 13 ms 8540 KB Output is correct
40 Correct 39 ms 7640 KB Output is correct
41 Correct 81 ms 25544 KB Output is correct
42 Correct 76 ms 22948 KB Output is correct
43 Correct 16 ms 6748 KB Output is correct
44 Correct 68 ms 25516 KB Output is correct
45 Correct 70 ms 22888 KB Output is correct
46 Correct 21 ms 7132 KB Output is correct
47 Correct 68 ms 25936 KB Output is correct
48 Correct 68 ms 26300 KB Output is correct
49 Correct 19 ms 5752 KB Output is correct
50 Correct 79 ms 14836 KB Output is correct
51 Correct 61 ms 25220 KB Output is correct
52 Correct 14 ms 6488 KB Output is correct
53 Correct 13 ms 5720 KB Output is correct
54 Correct 64 ms 17548 KB Output is correct
55 Correct 67 ms 15552 KB Output is correct
56 Correct 137 ms 31324 KB Output is correct
57 Correct 158 ms 28800 KB Output is correct
58 Correct 175 ms 30208 KB Output is correct
59 Correct 162 ms 26804 KB Output is correct
60 Correct 171 ms 23716 KB Output is correct
61 Correct 193 ms 29628 KB Output is correct
62 Correct 125 ms 26212 KB Output is correct
63 Correct 120 ms 26620 KB Output is correct
64 Correct 74 ms 8828 KB Output is correct
65 Correct 176 ms 28296 KB Output is correct
66 Correct 56 ms 9304 KB Output is correct
67 Correct 50 ms 12228 KB Output is correct
68 Correct 82 ms 23472 KB Output is correct
69 Correct 165 ms 29432 KB Output is correct
70 Correct 17 ms 7004 KB Output is correct
71 Correct 96 ms 23672 KB Output is correct
72 Correct 140 ms 27444 KB Output is correct
73 Correct 14 ms 5724 KB Output is correct
74 Correct 87 ms 18640 KB Output is correct
75 Correct 145 ms 32244 KB Output is correct
76 Correct 14 ms 8536 KB Output is correct
77 Correct 71 ms 15352 KB Output is correct
78 Correct 111 ms 24760 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 8480 KB Output is correct
2 Correct 46 ms 7384 KB Output is correct
3 Correct 17 ms 6788 KB Output is correct
4 Correct 15 ms 5912 KB Output is correct
5 Correct 160 ms 30536 KB Output is correct
6 Correct 167 ms 29240 KB Output is correct
7 Correct 173 ms 29936 KB Output is correct
8 Correct 160 ms 28892 KB Output is correct
9 Correct 191 ms 30724 KB Output is correct
10 Correct 167 ms 29136 KB Output is correct
11 Correct 146 ms 27852 KB Output is correct
12 Correct 147 ms 28584 KB Output is correct
13 Correct 104 ms 12368 KB Output is correct
14 Correct 202 ms 29388 KB Output is correct
15 Correct 161 ms 29248 KB Output is correct
16 Correct 71 ms 17996 KB Output is correct
17 Correct 73 ms 26112 KB Output is correct
18 Correct 155 ms 29756 KB Output is correct
19 Correct 71 ms 26504 KB Output is correct
20 Correct 77 ms 25876 KB Output is correct
21 Correct 138 ms 28720 KB Output is correct
22 Correct 62 ms 17836 KB Output is correct
23 Correct 73 ms 26036 KB Output is correct
24 Correct 152 ms 30628 KB Output is correct
25 Correct 69 ms 26516 KB Output is correct
26 Correct 65 ms 26280 KB Output is correct
27 Correct 127 ms 28292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 7 ms 6488 KB Output is correct
3 Correct 4 ms 8536 KB Output is correct
4 Correct 5 ms 6492 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 7 ms 5708 KB Output is correct
7 Correct 7 ms 5592 KB Output is correct
8 Correct 4 ms 8420 KB Output is correct
9 Correct 3 ms 6136 KB Output is correct
10 Correct 7 ms 5584 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 5 ms 5212 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 7 ms 6492 KB Output is correct
15 Correct 5 ms 5416 KB Output is correct
16 Correct 4 ms 6492 KB Output is correct
17 Correct 5 ms 5592 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 5 ms 5468 KB Output is correct
20 Correct 5 ms 6492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 5 ms 5212 KB Output is correct
25 Correct 4 ms 5212 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 6520 KB Output is correct
28 Correct 4 ms 8536 KB Output is correct
29 Correct 61 ms 26044 KB Output is correct
30 Correct 69 ms 25872 KB Output is correct
31 Correct 68 ms 25908 KB Output is correct
32 Correct 67 ms 25936 KB Output is correct
33 Correct 70 ms 15544 KB Output is correct
34 Correct 55 ms 14372 KB Output is correct
35 Correct 64 ms 22696 KB Output is correct
36 Correct 75 ms 22444 KB Output is correct
37 Correct 21 ms 6492 KB Output is correct
38 Correct 67 ms 23880 KB Output is correct
39 Correct 13 ms 8540 KB Output is correct
40 Correct 39 ms 7640 KB Output is correct
41 Correct 81 ms 25544 KB Output is correct
42 Correct 76 ms 22948 KB Output is correct
43 Correct 16 ms 6748 KB Output is correct
44 Correct 68 ms 25516 KB Output is correct
45 Correct 70 ms 22888 KB Output is correct
46 Correct 21 ms 7132 KB Output is correct
47 Correct 68 ms 25936 KB Output is correct
48 Correct 68 ms 26300 KB Output is correct
49 Correct 19 ms 5752 KB Output is correct
50 Correct 79 ms 14836 KB Output is correct
51 Correct 61 ms 25220 KB Output is correct
52 Correct 14 ms 6488 KB Output is correct
53 Correct 13 ms 5720 KB Output is correct
54 Correct 64 ms 17548 KB Output is correct
55 Correct 67 ms 15552 KB Output is correct
56 Correct 137 ms 31324 KB Output is correct
57 Correct 158 ms 28800 KB Output is correct
58 Correct 175 ms 30208 KB Output is correct
59 Correct 162 ms 26804 KB Output is correct
60 Correct 171 ms 23716 KB Output is correct
61 Correct 193 ms 29628 KB Output is correct
62 Correct 125 ms 26212 KB Output is correct
63 Correct 120 ms 26620 KB Output is correct
64 Correct 74 ms 8828 KB Output is correct
65 Correct 176 ms 28296 KB Output is correct
66 Correct 56 ms 9304 KB Output is correct
67 Correct 50 ms 12228 KB Output is correct
68 Correct 82 ms 23472 KB Output is correct
69 Correct 165 ms 29432 KB Output is correct
70 Correct 17 ms 7004 KB Output is correct
71 Correct 96 ms 23672 KB Output is correct
72 Correct 140 ms 27444 KB Output is correct
73 Correct 14 ms 5724 KB Output is correct
74 Correct 87 ms 18640 KB Output is correct
75 Correct 145 ms 32244 KB Output is correct
76 Correct 14 ms 8536 KB Output is correct
77 Correct 71 ms 15352 KB Output is correct
78 Correct 111 ms 24760 KB Output is correct
79 Correct 48 ms 8480 KB Output is correct
80 Correct 46 ms 7384 KB Output is correct
81 Correct 17 ms 6788 KB Output is correct
82 Correct 15 ms 5912 KB Output is correct
83 Correct 160 ms 30536 KB Output is correct
84 Correct 167 ms 29240 KB Output is correct
85 Correct 173 ms 29936 KB Output is correct
86 Correct 160 ms 28892 KB Output is correct
87 Correct 191 ms 30724 KB Output is correct
88 Correct 167 ms 29136 KB Output is correct
89 Correct 146 ms 27852 KB Output is correct
90 Correct 147 ms 28584 KB Output is correct
91 Correct 104 ms 12368 KB Output is correct
92 Correct 202 ms 29388 KB Output is correct
93 Correct 161 ms 29248 KB Output is correct
94 Correct 71 ms 17996 KB Output is correct
95 Correct 73 ms 26112 KB Output is correct
96 Correct 155 ms 29756 KB Output is correct
97 Correct 71 ms 26504 KB Output is correct
98 Correct 77 ms 25876 KB Output is correct
99 Correct 138 ms 28720 KB Output is correct
100 Correct 62 ms 17836 KB Output is correct
101 Correct 73 ms 26036 KB Output is correct
102 Correct 152 ms 30628 KB Output is correct
103 Correct 69 ms 26516 KB Output is correct
104 Correct 65 ms 26280 KB Output is correct
105 Correct 127 ms 28292 KB Output is correct
106 Correct 36 ms 9232 KB Output is correct
107 Correct 41 ms 10964 KB Output is correct
108 Correct 39 ms 9824 KB Output is correct
109 Correct 45 ms 10696 KB Output is correct
110 Correct 166 ms 31544 KB Output is correct
111 Correct 189 ms 30752 KB Output is correct
112 Correct 181 ms 30468 KB Output is correct
113 Correct 155 ms 29484 KB Output is correct
114 Correct 159 ms 31784 KB Output is correct
115 Correct 176 ms 30176 KB Output is correct
116 Correct 182 ms 46244 KB Output is correct
117 Correct 140 ms 28456 KB Output is correct
118 Correct 110 ms 14280 KB Output is correct
119 Correct 52 ms 11344 KB Output is correct
120 Correct 169 ms 30008 KB Output is correct
121 Correct 73 ms 26552 KB Output is correct
122 Correct 78 ms 26288 KB Output is correct
123 Correct 162 ms 30512 KB Output is correct
124 Correct 66 ms 18488 KB Output is correct
125 Correct 91 ms 26040 KB Output is correct
126 Correct 156 ms 30000 KB Output is correct
127 Correct 64 ms 17600 KB Output is correct
128 Correct 84 ms 26800 KB Output is correct
129 Correct 161 ms 32364 KB Output is correct
130 Correct 74 ms 26296 KB Output is correct
131 Correct 83 ms 26292 KB Output is correct
132 Correct 141 ms 28516 KB Output is correct