Submission #987972

# Submission time Handle Problem Language Result Execution time Memory
987972 2024-05-23T19:53:28 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
183 ms 46076 KB
#include <iostream>
#include <algorithm>
#include <queue>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;int inf=1000000007;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:9:363: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    9 | using namespace std;int inf=1000000007;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'node godown(node)':
Main.cpp:9:921: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    9 | using namespace std;int inf=1000000007;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ^
Main.cpp: In function 'int main()':
Main.cpp:9:1870: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    9 | using namespace std;int inf=1000000007;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ~~~~~~~~~~~~~^~~~~
Main.cpp:9:2072: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    9 | using namespace std;int inf=1000000007;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ~^~~~~~~~~~~~~~
Main.cpp:9:2156: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    9 | using namespace std;int inf=1000000007;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[2
# Verdict Execution time Memory Grader output
1 Correct 5 ms 5724 KB Output is correct
2 Correct 5 ms 5592 KB Output is correct
3 Correct 5 ms 5592 KB Output is correct
4 Correct 5 ms 5588 KB Output is correct
5 Correct 5 ms 5976 KB Output is correct
6 Correct 5 ms 5588 KB Output is correct
7 Correct 4 ms 5592 KB Output is correct
8 Correct 4 ms 5464 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 5 ms 5592 KB Output is correct
11 Correct 4 ms 5212 KB Output is correct
12 Correct 4 ms 5212 KB Output is correct
13 Correct 4 ms 5468 KB Output is correct
14 Correct 5 ms 5592 KB Output is correct
15 Correct 4 ms 5212 KB Output is correct
16 Correct 4 ms 5468 KB Output is correct
17 Correct 5 ms 5592 KB Output is correct
18 Correct 4 ms 5140 KB Output is correct
19 Correct 4 ms 5468 KB Output is correct
20 Correct 5 ms 5724 KB Output is correct
21 Correct 4 ms 5212 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 5 ms 5468 KB Output is correct
24 Correct 4 ms 5212 KB Output is correct
25 Correct 4 ms 5212 KB Output is correct
26 Correct 4 ms 5592 KB Output is correct
27 Correct 4 ms 5592 KB Output is correct
28 Correct 6 ms 5468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 77 ms 22932 KB Output is correct
2 Correct 64 ms 22968 KB Output is correct
3 Correct 66 ms 22928 KB Output is correct
4 Correct 61 ms 22956 KB Output is correct
5 Correct 54 ms 14760 KB Output is correct
6 Correct 57 ms 14512 KB Output is correct
7 Correct 65 ms 22704 KB Output is correct
8 Correct 59 ms 22448 KB Output is correct
9 Correct 13 ms 5976 KB Output is correct
10 Correct 62 ms 23012 KB Output is correct
11 Correct 12 ms 5724 KB Output is correct
12 Correct 28 ms 6572 KB Output is correct
13 Correct 64 ms 22704 KB Output is correct
14 Correct 66 ms 23260 KB Output is correct
15 Correct 13 ms 5720 KB Output is correct
16 Correct 62 ms 22464 KB Output is correct
17 Correct 65 ms 22700 KB Output is correct
18 Correct 21 ms 6360 KB Output is correct
19 Correct 76 ms 22968 KB Output is correct
20 Correct 72 ms 23276 KB Output is correct
21 Correct 14 ms 5720 KB Output is correct
22 Correct 57 ms 14032 KB Output is correct
23 Correct 65 ms 22468 KB Output is correct
24 Correct 15 ms 5720 KB Output is correct
25 Correct 12 ms 5720 KB Output is correct
26 Correct 50 ms 14528 KB Output is correct
27 Correct 51 ms 14536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 5724 KB Output is correct
2 Correct 5 ms 5592 KB Output is correct
3 Correct 5 ms 5592 KB Output is correct
4 Correct 5 ms 5588 KB Output is correct
5 Correct 5 ms 5976 KB Output is correct
6 Correct 5 ms 5588 KB Output is correct
7 Correct 4 ms 5592 KB Output is correct
8 Correct 4 ms 5464 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 5 ms 5592 KB Output is correct
11 Correct 4 ms 5212 KB Output is correct
12 Correct 4 ms 5212 KB Output is correct
13 Correct 4 ms 5468 KB Output is correct
14 Correct 5 ms 5592 KB Output is correct
15 Correct 4 ms 5212 KB Output is correct
16 Correct 4 ms 5468 KB Output is correct
17 Correct 5 ms 5592 KB Output is correct
18 Correct 4 ms 5140 KB Output is correct
19 Correct 4 ms 5468 KB Output is correct
20 Correct 5 ms 5724 KB Output is correct
21 Correct 4 ms 5212 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 5 ms 5468 KB Output is correct
24 Correct 4 ms 5212 KB Output is correct
25 Correct 4 ms 5212 KB Output is correct
26 Correct 4 ms 5592 KB Output is correct
27 Correct 4 ms 5592 KB Output is correct
28 Correct 6 ms 5468 KB Output is correct
29 Correct 77 ms 22932 KB Output is correct
30 Correct 64 ms 22968 KB Output is correct
31 Correct 66 ms 22928 KB Output is correct
32 Correct 61 ms 22956 KB Output is correct
33 Correct 54 ms 14760 KB Output is correct
34 Correct 57 ms 14512 KB Output is correct
35 Correct 65 ms 22704 KB Output is correct
36 Correct 59 ms 22448 KB Output is correct
37 Correct 13 ms 5976 KB Output is correct
38 Correct 62 ms 23012 KB Output is correct
39 Correct 12 ms 5724 KB Output is correct
40 Correct 28 ms 6572 KB Output is correct
41 Correct 64 ms 22704 KB Output is correct
42 Correct 66 ms 23260 KB Output is correct
43 Correct 13 ms 5720 KB Output is correct
44 Correct 62 ms 22464 KB Output is correct
45 Correct 65 ms 22700 KB Output is correct
46 Correct 21 ms 6360 KB Output is correct
47 Correct 76 ms 22968 KB Output is correct
48 Correct 72 ms 23276 KB Output is correct
49 Correct 14 ms 5720 KB Output is correct
50 Correct 57 ms 14032 KB Output is correct
51 Correct 65 ms 22468 KB Output is correct
52 Correct 15 ms 5720 KB Output is correct
53 Correct 12 ms 5720 KB Output is correct
54 Correct 50 ms 14528 KB Output is correct
55 Correct 51 ms 14536 KB Output is correct
56 Correct 137 ms 30820 KB Output is correct
57 Correct 146 ms 27980 KB Output is correct
58 Correct 141 ms 29240 KB Output is correct
59 Correct 129 ms 26916 KB Output is correct
60 Correct 133 ms 23092 KB Output is correct
61 Correct 152 ms 28980 KB Output is correct
62 Correct 121 ms 25388 KB Output is correct
63 Correct 114 ms 23568 KB Output is correct
64 Correct 54 ms 8056 KB Output is correct
65 Correct 141 ms 28336 KB Output is correct
66 Correct 48 ms 8536 KB Output is correct
67 Correct 49 ms 9264 KB Output is correct
68 Correct 83 ms 23484 KB Output is correct
69 Correct 153 ms 29156 KB Output is correct
70 Correct 14 ms 5976 KB Output is correct
71 Correct 76 ms 23468 KB Output is correct
72 Correct 125 ms 26676 KB Output is correct
73 Correct 13 ms 5664 KB Output is correct
74 Correct 68 ms 15904 KB Output is correct
75 Correct 137 ms 31312 KB Output is correct
76 Correct 12 ms 5724 KB Output is correct
77 Correct 63 ms 14440 KB Output is correct
78 Correct 121 ms 23868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 7636 KB Output is correct
2 Correct 36 ms 6616 KB Output is correct
3 Correct 13 ms 5724 KB Output is correct
4 Correct 14 ms 5976 KB Output is correct
5 Correct 149 ms 30516 KB Output is correct
6 Correct 153 ms 29444 KB Output is correct
7 Correct 171 ms 29972 KB Output is correct
8 Correct 138 ms 28800 KB Output is correct
9 Correct 154 ms 30768 KB Output is correct
10 Correct 152 ms 29064 KB Output is correct
11 Correct 140 ms 27752 KB Output is correct
12 Correct 156 ms 27760 KB Output is correct
13 Correct 107 ms 11732 KB Output is correct
14 Correct 146 ms 29320 KB Output is correct
15 Correct 148 ms 29240 KB Output is correct
16 Correct 68 ms 14988 KB Output is correct
17 Correct 71 ms 22968 KB Output is correct
18 Correct 183 ms 29484 KB Output is correct
19 Correct 68 ms 23224 KB Output is correct
20 Correct 71 ms 23028 KB Output is correct
21 Correct 142 ms 28796 KB Output is correct
22 Correct 62 ms 14776 KB Output is correct
23 Correct 72 ms 22964 KB Output is correct
24 Correct 175 ms 30624 KB Output is correct
25 Correct 63 ms 23396 KB Output is correct
26 Correct 67 ms 23380 KB Output is correct
27 Correct 129 ms 27524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 5724 KB Output is correct
2 Correct 5 ms 5592 KB Output is correct
3 Correct 5 ms 5592 KB Output is correct
4 Correct 5 ms 5588 KB Output is correct
5 Correct 5 ms 5976 KB Output is correct
6 Correct 5 ms 5588 KB Output is correct
7 Correct 4 ms 5592 KB Output is correct
8 Correct 4 ms 5464 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 5 ms 5592 KB Output is correct
11 Correct 4 ms 5212 KB Output is correct
12 Correct 4 ms 5212 KB Output is correct
13 Correct 4 ms 5468 KB Output is correct
14 Correct 5 ms 5592 KB Output is correct
15 Correct 4 ms 5212 KB Output is correct
16 Correct 4 ms 5468 KB Output is correct
17 Correct 5 ms 5592 KB Output is correct
18 Correct 4 ms 5140 KB Output is correct
19 Correct 4 ms 5468 KB Output is correct
20 Correct 5 ms 5724 KB Output is correct
21 Correct 4 ms 5212 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 5 ms 5468 KB Output is correct
24 Correct 4 ms 5212 KB Output is correct
25 Correct 4 ms 5212 KB Output is correct
26 Correct 4 ms 5592 KB Output is correct
27 Correct 4 ms 5592 KB Output is correct
28 Correct 6 ms 5468 KB Output is correct
29 Correct 77 ms 22932 KB Output is correct
30 Correct 64 ms 22968 KB Output is correct
31 Correct 66 ms 22928 KB Output is correct
32 Correct 61 ms 22956 KB Output is correct
33 Correct 54 ms 14760 KB Output is correct
34 Correct 57 ms 14512 KB Output is correct
35 Correct 65 ms 22704 KB Output is correct
36 Correct 59 ms 22448 KB Output is correct
37 Correct 13 ms 5976 KB Output is correct
38 Correct 62 ms 23012 KB Output is correct
39 Correct 12 ms 5724 KB Output is correct
40 Correct 28 ms 6572 KB Output is correct
41 Correct 64 ms 22704 KB Output is correct
42 Correct 66 ms 23260 KB Output is correct
43 Correct 13 ms 5720 KB Output is correct
44 Correct 62 ms 22464 KB Output is correct
45 Correct 65 ms 22700 KB Output is correct
46 Correct 21 ms 6360 KB Output is correct
47 Correct 76 ms 22968 KB Output is correct
48 Correct 72 ms 23276 KB Output is correct
49 Correct 14 ms 5720 KB Output is correct
50 Correct 57 ms 14032 KB Output is correct
51 Correct 65 ms 22468 KB Output is correct
52 Correct 15 ms 5720 KB Output is correct
53 Correct 12 ms 5720 KB Output is correct
54 Correct 50 ms 14528 KB Output is correct
55 Correct 51 ms 14536 KB Output is correct
56 Correct 137 ms 30820 KB Output is correct
57 Correct 146 ms 27980 KB Output is correct
58 Correct 141 ms 29240 KB Output is correct
59 Correct 129 ms 26916 KB Output is correct
60 Correct 133 ms 23092 KB Output is correct
61 Correct 152 ms 28980 KB Output is correct
62 Correct 121 ms 25388 KB Output is correct
63 Correct 114 ms 23568 KB Output is correct
64 Correct 54 ms 8056 KB Output is correct
65 Correct 141 ms 28336 KB Output is correct
66 Correct 48 ms 8536 KB Output is correct
67 Correct 49 ms 9264 KB Output is correct
68 Correct 83 ms 23484 KB Output is correct
69 Correct 153 ms 29156 KB Output is correct
70 Correct 14 ms 5976 KB Output is correct
71 Correct 76 ms 23468 KB Output is correct
72 Correct 125 ms 26676 KB Output is correct
73 Correct 13 ms 5664 KB Output is correct
74 Correct 68 ms 15904 KB Output is correct
75 Correct 137 ms 31312 KB Output is correct
76 Correct 12 ms 5724 KB Output is correct
77 Correct 63 ms 14440 KB Output is correct
78 Correct 121 ms 23868 KB Output is correct
79 Correct 41 ms 7636 KB Output is correct
80 Correct 36 ms 6616 KB Output is correct
81 Correct 13 ms 5724 KB Output is correct
82 Correct 14 ms 5976 KB Output is correct
83 Correct 149 ms 30516 KB Output is correct
84 Correct 153 ms 29444 KB Output is correct
85 Correct 171 ms 29972 KB Output is correct
86 Correct 138 ms 28800 KB Output is correct
87 Correct 154 ms 30768 KB Output is correct
88 Correct 152 ms 29064 KB Output is correct
89 Correct 140 ms 27752 KB Output is correct
90 Correct 156 ms 27760 KB Output is correct
91 Correct 107 ms 11732 KB Output is correct
92 Correct 146 ms 29320 KB Output is correct
93 Correct 148 ms 29240 KB Output is correct
94 Correct 68 ms 14988 KB Output is correct
95 Correct 71 ms 22968 KB Output is correct
96 Correct 183 ms 29484 KB Output is correct
97 Correct 68 ms 23224 KB Output is correct
98 Correct 71 ms 23028 KB Output is correct
99 Correct 142 ms 28796 KB Output is correct
100 Correct 62 ms 14776 KB Output is correct
101 Correct 72 ms 22964 KB Output is correct
102 Correct 175 ms 30624 KB Output is correct
103 Correct 63 ms 23396 KB Output is correct
104 Correct 67 ms 23380 KB Output is correct
105 Correct 129 ms 27524 KB Output is correct
106 Correct 38 ms 6352 KB Output is correct
107 Correct 42 ms 7880 KB Output is correct
108 Correct 48 ms 6860 KB Output is correct
109 Correct 46 ms 7880 KB Output is correct
110 Correct 172 ms 31644 KB Output is correct
111 Correct 170 ms 30720 KB Output is correct
112 Correct 165 ms 30604 KB Output is correct
113 Correct 160 ms 29492 KB Output is correct
114 Correct 178 ms 31876 KB Output is correct
115 Correct 155 ms 30256 KB Output is correct
116 Correct 172 ms 46076 KB Output is correct
117 Correct 151 ms 27944 KB Output is correct
118 Correct 111 ms 13516 KB Output is correct
119 Correct 51 ms 8484 KB Output is correct
120 Correct 178 ms 30012 KB Output is correct
121 Correct 75 ms 23496 KB Output is correct
122 Correct 84 ms 23336 KB Output is correct
123 Correct 180 ms 30656 KB Output is correct
124 Correct 66 ms 15540 KB Output is correct
125 Correct 92 ms 23220 KB Output is correct
126 Correct 168 ms 29996 KB Output is correct
127 Correct 63 ms 14536 KB Output is correct
128 Correct 74 ms 23732 KB Output is correct
129 Correct 162 ms 32132 KB Output is correct
130 Correct 72 ms 23308 KB Output is correct
131 Correct 83 ms 23232 KB Output is correct
132 Correct 179 ms 27648 KB Output is correct