Submission #987962

# Submission time Handle Problem Language Result Execution time Memory
987962 2024-05-23T19:45:48 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
187 ms 47532 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8552 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 6 ms 8496 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 8116 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 7 ms 8536 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8784 KB Output is correct
17 Correct 5 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 2 ms 5980 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 5 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 61 ms 27004 KB Output is correct
2 Correct 60 ms 27200 KB Output is correct
3 Correct 62 ms 27824 KB Output is correct
4 Correct 59 ms 27332 KB Output is correct
5 Correct 64 ms 18108 KB Output is correct
6 Correct 51 ms 17344 KB Output is correct
7 Correct 57 ms 25940 KB Output is correct
8 Correct 54 ms 26288 KB Output is correct
9 Correct 16 ms 8536 KB Output is correct
10 Correct 58 ms 27332 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 27 ms 9684 KB Output is correct
13 Correct 60 ms 27572 KB Output is correct
14 Correct 58 ms 26796 KB Output is correct
15 Correct 12 ms 8796 KB Output is correct
16 Correct 61 ms 26560 KB Output is correct
17 Correct 58 ms 26288 KB Output is correct
18 Correct 20 ms 9176 KB Output is correct
19 Correct 59 ms 26220 KB Output is correct
20 Correct 60 ms 27824 KB Output is correct
21 Correct 13 ms 8796 KB Output is correct
22 Correct 54 ms 17088 KB Output is correct
23 Correct 56 ms 25516 KB Output is correct
24 Correct 13 ms 8540 KB Output is correct
25 Correct 14 ms 8540 KB Output is correct
26 Correct 50 ms 17852 KB Output is correct
27 Correct 47 ms 17464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8552 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 6 ms 8496 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 8116 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 7 ms 8536 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8784 KB Output is correct
17 Correct 5 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 2 ms 5980 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 5 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 61 ms 27004 KB Output is correct
30 Correct 60 ms 27200 KB Output is correct
31 Correct 62 ms 27824 KB Output is correct
32 Correct 59 ms 27332 KB Output is correct
33 Correct 64 ms 18108 KB Output is correct
34 Correct 51 ms 17344 KB Output is correct
35 Correct 57 ms 25940 KB Output is correct
36 Correct 54 ms 26288 KB Output is correct
37 Correct 16 ms 8536 KB Output is correct
38 Correct 58 ms 27332 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 27 ms 9684 KB Output is correct
41 Correct 60 ms 27572 KB Output is correct
42 Correct 58 ms 26796 KB Output is correct
43 Correct 12 ms 8796 KB Output is correct
44 Correct 61 ms 26560 KB Output is correct
45 Correct 58 ms 26288 KB Output is correct
46 Correct 20 ms 9176 KB Output is correct
47 Correct 59 ms 26220 KB Output is correct
48 Correct 60 ms 27824 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 54 ms 17088 KB Output is correct
51 Correct 56 ms 25516 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 14 ms 8540 KB Output is correct
54 Correct 50 ms 17852 KB Output is correct
55 Correct 47 ms 17464 KB Output is correct
56 Correct 135 ms 32172 KB Output is correct
57 Correct 141 ms 30436 KB Output is correct
58 Correct 137 ms 30772 KB Output is correct
59 Correct 120 ms 30476 KB Output is correct
60 Correct 149 ms 24380 KB Output is correct
61 Correct 139 ms 31780 KB Output is correct
62 Correct 115 ms 29360 KB Output is correct
63 Correct 114 ms 27320 KB Output is correct
64 Correct 57 ms 10804 KB Output is correct
65 Correct 126 ms 31552 KB Output is correct
66 Correct 47 ms 11348 KB Output is correct
67 Correct 58 ms 12244 KB Output is correct
68 Correct 72 ms 26548 KB Output is correct
69 Correct 135 ms 30848 KB Output is correct
70 Correct 14 ms 9048 KB Output is correct
71 Correct 94 ms 26844 KB Output is correct
72 Correct 121 ms 29140 KB Output is correct
73 Correct 12 ms 8884 KB Output is correct
74 Correct 64 ms 18828 KB Output is correct
75 Correct 160 ms 32816 KB Output is correct
76 Correct 12 ms 8536 KB Output is correct
77 Correct 61 ms 19136 KB Output is correct
78 Correct 105 ms 28488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 10712 KB Output is correct
2 Correct 36 ms 9436 KB Output is correct
3 Correct 13 ms 8796 KB Output is correct
4 Correct 12 ms 8796 KB Output is correct
5 Correct 149 ms 32580 KB Output is correct
6 Correct 140 ms 30268 KB Output is correct
7 Correct 143 ms 30196 KB Output is correct
8 Correct 138 ms 29792 KB Output is correct
9 Correct 144 ms 31396 KB Output is correct
10 Correct 143 ms 30084 KB Output is correct
11 Correct 133 ms 28624 KB Output is correct
12 Correct 120 ms 30324 KB Output is correct
13 Correct 102 ms 12364 KB Output is correct
14 Correct 165 ms 31008 KB Output is correct
15 Correct 148 ms 29796 KB Output is correct
16 Correct 59 ms 19196 KB Output is correct
17 Correct 69 ms 26672 KB Output is correct
18 Correct 162 ms 30008 KB Output is correct
19 Correct 62 ms 27244 KB Output is correct
20 Correct 68 ms 27576 KB Output is correct
21 Correct 134 ms 30520 KB Output is correct
22 Correct 58 ms 18880 KB Output is correct
23 Correct 64 ms 26292 KB Output is correct
24 Correct 144 ms 31388 KB Output is correct
25 Correct 60 ms 27076 KB Output is correct
26 Correct 56 ms 26600 KB Output is correct
27 Correct 122 ms 29648 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8552 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 6 ms 8496 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 8116 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 7 ms 8536 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8784 KB Output is correct
17 Correct 5 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 2 ms 5980 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 5 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 61 ms 27004 KB Output is correct
30 Correct 60 ms 27200 KB Output is correct
31 Correct 62 ms 27824 KB Output is correct
32 Correct 59 ms 27332 KB Output is correct
33 Correct 64 ms 18108 KB Output is correct
34 Correct 51 ms 17344 KB Output is correct
35 Correct 57 ms 25940 KB Output is correct
36 Correct 54 ms 26288 KB Output is correct
37 Correct 16 ms 8536 KB Output is correct
38 Correct 58 ms 27332 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 27 ms 9684 KB Output is correct
41 Correct 60 ms 27572 KB Output is correct
42 Correct 58 ms 26796 KB Output is correct
43 Correct 12 ms 8796 KB Output is correct
44 Correct 61 ms 26560 KB Output is correct
45 Correct 58 ms 26288 KB Output is correct
46 Correct 20 ms 9176 KB Output is correct
47 Correct 59 ms 26220 KB Output is correct
48 Correct 60 ms 27824 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 54 ms 17088 KB Output is correct
51 Correct 56 ms 25516 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 14 ms 8540 KB Output is correct
54 Correct 50 ms 17852 KB Output is correct
55 Correct 47 ms 17464 KB Output is correct
56 Correct 135 ms 32172 KB Output is correct
57 Correct 141 ms 30436 KB Output is correct
58 Correct 137 ms 30772 KB Output is correct
59 Correct 120 ms 30476 KB Output is correct
60 Correct 149 ms 24380 KB Output is correct
61 Correct 139 ms 31780 KB Output is correct
62 Correct 115 ms 29360 KB Output is correct
63 Correct 114 ms 27320 KB Output is correct
64 Correct 57 ms 10804 KB Output is correct
65 Correct 126 ms 31552 KB Output is correct
66 Correct 47 ms 11348 KB Output is correct
67 Correct 58 ms 12244 KB Output is correct
68 Correct 72 ms 26548 KB Output is correct
69 Correct 135 ms 30848 KB Output is correct
70 Correct 14 ms 9048 KB Output is correct
71 Correct 94 ms 26844 KB Output is correct
72 Correct 121 ms 29140 KB Output is correct
73 Correct 12 ms 8884 KB Output is correct
74 Correct 64 ms 18828 KB Output is correct
75 Correct 160 ms 32816 KB Output is correct
76 Correct 12 ms 8536 KB Output is correct
77 Correct 61 ms 19136 KB Output is correct
78 Correct 105 ms 28488 KB Output is correct
79 Correct 41 ms 10712 KB Output is correct
80 Correct 36 ms 9436 KB Output is correct
81 Correct 13 ms 8796 KB Output is correct
82 Correct 12 ms 8796 KB Output is correct
83 Correct 149 ms 32580 KB Output is correct
84 Correct 140 ms 30268 KB Output is correct
85 Correct 143 ms 30196 KB Output is correct
86 Correct 138 ms 29792 KB Output is correct
87 Correct 144 ms 31396 KB Output is correct
88 Correct 143 ms 30084 KB Output is correct
89 Correct 133 ms 28624 KB Output is correct
90 Correct 120 ms 30324 KB Output is correct
91 Correct 102 ms 12364 KB Output is correct
92 Correct 165 ms 31008 KB Output is correct
93 Correct 148 ms 29796 KB Output is correct
94 Correct 59 ms 19196 KB Output is correct
95 Correct 69 ms 26672 KB Output is correct
96 Correct 162 ms 30008 KB Output is correct
97 Correct 62 ms 27244 KB Output is correct
98 Correct 68 ms 27576 KB Output is correct
99 Correct 134 ms 30520 KB Output is correct
100 Correct 58 ms 18880 KB Output is correct
101 Correct 64 ms 26292 KB Output is correct
102 Correct 144 ms 31388 KB Output is correct
103 Correct 60 ms 27076 KB Output is correct
104 Correct 56 ms 26600 KB Output is correct
105 Correct 122 ms 29648 KB Output is correct
106 Correct 37 ms 9336 KB Output is correct
107 Correct 44 ms 10952 KB Output is correct
108 Correct 38 ms 9680 KB Output is correct
109 Correct 45 ms 10696 KB Output is correct
110 Correct 151 ms 33584 KB Output is correct
111 Correct 187 ms 30828 KB Output is correct
112 Correct 151 ms 30520 KB Output is correct
113 Correct 151 ms 30252 KB Output is correct
114 Correct 150 ms 31836 KB Output is correct
115 Correct 151 ms 31552 KB Output is correct
116 Correct 156 ms 47532 KB Output is correct
117 Correct 132 ms 28348 KB Output is correct
118 Correct 111 ms 14460 KB Output is correct
119 Correct 49 ms 11348 KB Output is correct
120 Correct 173 ms 29900 KB Output is correct
121 Correct 82 ms 28148 KB Output is correct
122 Correct 73 ms 27196 KB Output is correct
123 Correct 166 ms 31768 KB Output is correct
124 Correct 62 ms 19396 KB Output is correct
125 Correct 80 ms 28084 KB Output is correct
126 Correct 154 ms 30848 KB Output is correct
127 Correct 60 ms 18476 KB Output is correct
128 Correct 71 ms 27320 KB Output is correct
129 Correct 148 ms 33944 KB Output is correct
130 Correct 65 ms 26296 KB Output is correct
131 Correct 74 ms 27580 KB Output is correct
132 Correct 143 ms 28848 KB Output is correct