Submission #987955

# Submission time Handle Problem Language Result Execution time Memory
987955 2024-05-23T19:44:01 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
215 ms 46192 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 6 ms 6492 KB Output is correct
3 Correct 5 ms 5592 KB Output is correct
4 Correct 6 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8696 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8536 KB Output is correct
16 Correct 6 ms 8540 KB Output is correct
17 Correct 6 ms 8540 KB Output is correct
18 Correct 4 ms 8280 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8136 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 7 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 6 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 59 ms 26240 KB Output is correct
2 Correct 80 ms 27060 KB Output is correct
3 Correct 72 ms 26624 KB Output is correct
4 Correct 65 ms 27832 KB Output is correct
5 Correct 64 ms 18552 KB Output is correct
6 Correct 57 ms 19068 KB Output is correct
7 Correct 64 ms 26420 KB Output is correct
8 Correct 64 ms 26288 KB Output is correct
9 Correct 25 ms 8540 KB Output is correct
10 Correct 63 ms 27464 KB Output is correct
11 Correct 13 ms 8536 KB Output is correct
12 Correct 33 ms 9584 KB Output is correct
13 Correct 66 ms 27004 KB Output is correct
14 Correct 64 ms 27236 KB Output is correct
15 Correct 13 ms 8792 KB Output is correct
16 Correct 84 ms 27440 KB Output is correct
17 Correct 68 ms 25780 KB Output is correct
18 Correct 20 ms 9180 KB Output is correct
19 Correct 70 ms 26352 KB Output is correct
20 Correct 64 ms 27452 KB Output is correct
21 Correct 14 ms 8796 KB Output is correct
22 Correct 55 ms 18368 KB Output is correct
23 Correct 62 ms 25412 KB Output is correct
24 Correct 14 ms 8592 KB Output is correct
25 Correct 13 ms 8540 KB Output is correct
26 Correct 52 ms 19344 KB Output is correct
27 Correct 49 ms 19452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 6 ms 6492 KB Output is correct
3 Correct 5 ms 5592 KB Output is correct
4 Correct 6 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8696 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8536 KB Output is correct
16 Correct 6 ms 8540 KB Output is correct
17 Correct 6 ms 8540 KB Output is correct
18 Correct 4 ms 8280 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8136 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 7 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 6 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 59 ms 26240 KB Output is correct
30 Correct 80 ms 27060 KB Output is correct
31 Correct 72 ms 26624 KB Output is correct
32 Correct 65 ms 27832 KB Output is correct
33 Correct 64 ms 18552 KB Output is correct
34 Correct 57 ms 19068 KB Output is correct
35 Correct 64 ms 26420 KB Output is correct
36 Correct 64 ms 26288 KB Output is correct
37 Correct 25 ms 8540 KB Output is correct
38 Correct 63 ms 27464 KB Output is correct
39 Correct 13 ms 8536 KB Output is correct
40 Correct 33 ms 9584 KB Output is correct
41 Correct 66 ms 27004 KB Output is correct
42 Correct 64 ms 27236 KB Output is correct
43 Correct 13 ms 8792 KB Output is correct
44 Correct 84 ms 27440 KB Output is correct
45 Correct 68 ms 25780 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 70 ms 26352 KB Output is correct
48 Correct 64 ms 27452 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 55 ms 18368 KB Output is correct
51 Correct 62 ms 25412 KB Output is correct
52 Correct 14 ms 8592 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 52 ms 19344 KB Output is correct
55 Correct 49 ms 19452 KB Output is correct
56 Correct 134 ms 32644 KB Output is correct
57 Correct 140 ms 31840 KB Output is correct
58 Correct 177 ms 31700 KB Output is correct
59 Correct 135 ms 31204 KB Output is correct
60 Correct 155 ms 24276 KB Output is correct
61 Correct 138 ms 29756 KB Output is correct
62 Correct 121 ms 28280 KB Output is correct
63 Correct 106 ms 27972 KB Output is correct
64 Correct 61 ms 10972 KB Output is correct
65 Correct 166 ms 30200 KB Output is correct
66 Correct 66 ms 11304 KB Output is correct
67 Correct 68 ms 12112 KB Output is correct
68 Correct 77 ms 26832 KB Output is correct
69 Correct 151 ms 30432 KB Output is correct
70 Correct 17 ms 9048 KB Output is correct
71 Correct 76 ms 27652 KB Output is correct
72 Correct 135 ms 29128 KB Output is correct
73 Correct 20 ms 8796 KB Output is correct
74 Correct 67 ms 18612 KB Output is correct
75 Correct 137 ms 32328 KB Output is correct
76 Correct 13 ms 8540 KB Output is correct
77 Correct 62 ms 19396 KB Output is correct
78 Correct 105 ms 27568 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 10712 KB Output is correct
2 Correct 36 ms 7340 KB Output is correct
3 Correct 13 ms 8796 KB Output is correct
4 Correct 14 ms 8920 KB Output is correct
5 Correct 181 ms 31088 KB Output is correct
6 Correct 156 ms 30016 KB Output is correct
7 Correct 152 ms 30700 KB Output is correct
8 Correct 154 ms 29556 KB Output is correct
9 Correct 215 ms 30824 KB Output is correct
10 Correct 196 ms 29192 KB Output is correct
11 Correct 171 ms 27824 KB Output is correct
12 Correct 145 ms 27820 KB Output is correct
13 Correct 104 ms 11636 KB Output is correct
14 Correct 153 ms 29324 KB Output is correct
15 Correct 181 ms 29304 KB Output is correct
16 Correct 83 ms 18372 KB Output is correct
17 Correct 101 ms 27960 KB Output is correct
18 Correct 192 ms 29748 KB Output is correct
19 Correct 79 ms 27320 KB Output is correct
20 Correct 100 ms 26348 KB Output is correct
21 Correct 164 ms 29500 KB Output is correct
22 Correct 70 ms 18896 KB Output is correct
23 Correct 76 ms 26888 KB Output is correct
24 Correct 163 ms 31148 KB Output is correct
25 Correct 70 ms 26812 KB Output is correct
26 Correct 62 ms 26416 KB Output is correct
27 Correct 134 ms 28124 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 6 ms 6492 KB Output is correct
3 Correct 5 ms 5592 KB Output is correct
4 Correct 6 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8696 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8536 KB Output is correct
16 Correct 6 ms 8540 KB Output is correct
17 Correct 6 ms 8540 KB Output is correct
18 Correct 4 ms 8280 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8136 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 7 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 6 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 59 ms 26240 KB Output is correct
30 Correct 80 ms 27060 KB Output is correct
31 Correct 72 ms 26624 KB Output is correct
32 Correct 65 ms 27832 KB Output is correct
33 Correct 64 ms 18552 KB Output is correct
34 Correct 57 ms 19068 KB Output is correct
35 Correct 64 ms 26420 KB Output is correct
36 Correct 64 ms 26288 KB Output is correct
37 Correct 25 ms 8540 KB Output is correct
38 Correct 63 ms 27464 KB Output is correct
39 Correct 13 ms 8536 KB Output is correct
40 Correct 33 ms 9584 KB Output is correct
41 Correct 66 ms 27004 KB Output is correct
42 Correct 64 ms 27236 KB Output is correct
43 Correct 13 ms 8792 KB Output is correct
44 Correct 84 ms 27440 KB Output is correct
45 Correct 68 ms 25780 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 70 ms 26352 KB Output is correct
48 Correct 64 ms 27452 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 55 ms 18368 KB Output is correct
51 Correct 62 ms 25412 KB Output is correct
52 Correct 14 ms 8592 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 52 ms 19344 KB Output is correct
55 Correct 49 ms 19452 KB Output is correct
56 Correct 134 ms 32644 KB Output is correct
57 Correct 140 ms 31840 KB Output is correct
58 Correct 177 ms 31700 KB Output is correct
59 Correct 135 ms 31204 KB Output is correct
60 Correct 155 ms 24276 KB Output is correct
61 Correct 138 ms 29756 KB Output is correct
62 Correct 121 ms 28280 KB Output is correct
63 Correct 106 ms 27972 KB Output is correct
64 Correct 61 ms 10972 KB Output is correct
65 Correct 166 ms 30200 KB Output is correct
66 Correct 66 ms 11304 KB Output is correct
67 Correct 68 ms 12112 KB Output is correct
68 Correct 77 ms 26832 KB Output is correct
69 Correct 151 ms 30432 KB Output is correct
70 Correct 17 ms 9048 KB Output is correct
71 Correct 76 ms 27652 KB Output is correct
72 Correct 135 ms 29128 KB Output is correct
73 Correct 20 ms 8796 KB Output is correct
74 Correct 67 ms 18612 KB Output is correct
75 Correct 137 ms 32328 KB Output is correct
76 Correct 13 ms 8540 KB Output is correct
77 Correct 62 ms 19396 KB Output is correct
78 Correct 105 ms 27568 KB Output is correct
79 Correct 41 ms 10712 KB Output is correct
80 Correct 36 ms 7340 KB Output is correct
81 Correct 13 ms 8796 KB Output is correct
82 Correct 14 ms 8920 KB Output is correct
83 Correct 181 ms 31088 KB Output is correct
84 Correct 156 ms 30016 KB Output is correct
85 Correct 152 ms 30700 KB Output is correct
86 Correct 154 ms 29556 KB Output is correct
87 Correct 215 ms 30824 KB Output is correct
88 Correct 196 ms 29192 KB Output is correct
89 Correct 171 ms 27824 KB Output is correct
90 Correct 145 ms 27820 KB Output is correct
91 Correct 104 ms 11636 KB Output is correct
92 Correct 153 ms 29324 KB Output is correct
93 Correct 181 ms 29304 KB Output is correct
94 Correct 83 ms 18372 KB Output is correct
95 Correct 101 ms 27960 KB Output is correct
96 Correct 192 ms 29748 KB Output is correct
97 Correct 79 ms 27320 KB Output is correct
98 Correct 100 ms 26348 KB Output is correct
99 Correct 164 ms 29500 KB Output is correct
100 Correct 70 ms 18896 KB Output is correct
101 Correct 76 ms 26888 KB Output is correct
102 Correct 163 ms 31148 KB Output is correct
103 Correct 70 ms 26812 KB Output is correct
104 Correct 62 ms 26416 KB Output is correct
105 Correct 134 ms 28124 KB Output is correct
106 Correct 39 ms 9176 KB Output is correct
107 Correct 43 ms 10952 KB Output is correct
108 Correct 53 ms 9856 KB Output is correct
109 Correct 42 ms 10644 KB Output is correct
110 Correct 197 ms 32912 KB Output is correct
111 Correct 173 ms 30772 KB Output is correct
112 Correct 165 ms 31804 KB Output is correct
113 Correct 181 ms 29972 KB Output is correct
114 Correct 185 ms 32824 KB Output is correct
115 Correct 171 ms 31556 KB Output is correct
116 Correct 168 ms 46192 KB Output is correct
117 Correct 148 ms 28392 KB Output is correct
118 Correct 121 ms 14288 KB Output is correct
119 Correct 62 ms 11300 KB Output is correct
120 Correct 206 ms 30404 KB Output is correct
121 Correct 76 ms 23496 KB Output is correct
122 Correct 91 ms 23444 KB Output is correct
123 Correct 163 ms 30564 KB Output is correct
124 Correct 74 ms 15332 KB Output is correct
125 Correct 83 ms 26156 KB Output is correct
126 Correct 182 ms 30004 KB Output is correct
127 Correct 77 ms 18368 KB Output is correct
128 Correct 82 ms 27320 KB Output is correct
129 Correct 215 ms 32232 KB Output is correct
130 Correct 84 ms 27580 KB Output is correct
131 Correct 81 ms 26708 KB Output is correct
132 Correct 144 ms 28568 KB Output is correct