Submission #987954

# Submission time Handle Problem Language Result Execution time Memory
987954 2024-05-23T19:43:49 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
226 ms 46040 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 6 ms 8536 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 7 ms 6492 KB Output is correct
6 Correct 4 ms 8536 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 7 ms 8552 KB Output is correct
15 Correct 3 ms 8280 KB Output is correct
16 Correct 4 ms 8692 KB Output is correct
17 Correct 7 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8536 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 5 ms 8284 KB Output is correct
25 Correct 4 ms 8280 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8780 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 58 ms 27228 KB Output is correct
2 Correct 60 ms 26632 KB Output is correct
3 Correct 60 ms 26036 KB Output is correct
4 Correct 61 ms 27832 KB Output is correct
5 Correct 55 ms 17972 KB Output is correct
6 Correct 52 ms 17328 KB Output is correct
7 Correct 69 ms 25924 KB Output is correct
8 Correct 55 ms 26032 KB Output is correct
9 Correct 14 ms 8540 KB Output is correct
10 Correct 80 ms 25752 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 40 ms 9688 KB Output is correct
13 Correct 72 ms 27648 KB Output is correct
14 Correct 60 ms 25780 KB Output is correct
15 Correct 13 ms 8792 KB Output is correct
16 Correct 60 ms 25564 KB Output is correct
17 Correct 62 ms 27036 KB Output is correct
18 Correct 22 ms 9180 KB Output is correct
19 Correct 77 ms 26808 KB Output is correct
20 Correct 59 ms 27312 KB Output is correct
21 Correct 13 ms 8796 KB Output is correct
22 Correct 59 ms 18368 KB Output is correct
23 Correct 59 ms 26556 KB Output is correct
24 Correct 12 ms 8540 KB Output is correct
25 Correct 12 ms 8620 KB Output is correct
26 Correct 52 ms 18112 KB Output is correct
27 Correct 51 ms 18216 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 6 ms 8536 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 7 ms 6492 KB Output is correct
6 Correct 4 ms 8536 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 7 ms 8552 KB Output is correct
15 Correct 3 ms 8280 KB Output is correct
16 Correct 4 ms 8692 KB Output is correct
17 Correct 7 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8536 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 5 ms 8284 KB Output is correct
25 Correct 4 ms 8280 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8780 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 58 ms 27228 KB Output is correct
30 Correct 60 ms 26632 KB Output is correct
31 Correct 60 ms 26036 KB Output is correct
32 Correct 61 ms 27832 KB Output is correct
33 Correct 55 ms 17972 KB Output is correct
34 Correct 52 ms 17328 KB Output is correct
35 Correct 69 ms 25924 KB Output is correct
36 Correct 55 ms 26032 KB Output is correct
37 Correct 14 ms 8540 KB Output is correct
38 Correct 80 ms 25752 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 40 ms 9688 KB Output is correct
41 Correct 72 ms 27648 KB Output is correct
42 Correct 60 ms 25780 KB Output is correct
43 Correct 13 ms 8792 KB Output is correct
44 Correct 60 ms 25564 KB Output is correct
45 Correct 62 ms 27036 KB Output is correct
46 Correct 22 ms 9180 KB Output is correct
47 Correct 77 ms 26808 KB Output is correct
48 Correct 59 ms 27312 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 59 ms 18368 KB Output is correct
51 Correct 59 ms 26556 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 12 ms 8620 KB Output is correct
54 Correct 52 ms 18112 KB Output is correct
55 Correct 51 ms 18216 KB Output is correct
56 Correct 144 ms 32048 KB Output is correct
57 Correct 129 ms 30020 KB Output is correct
58 Correct 169 ms 30916 KB Output is correct
59 Correct 146 ms 29496 KB Output is correct
60 Correct 171 ms 24244 KB Output is correct
61 Correct 180 ms 32644 KB Output is correct
62 Correct 170 ms 27868 KB Output is correct
63 Correct 133 ms 24596 KB Output is correct
64 Correct 58 ms 7872 KB Output is correct
65 Correct 160 ms 30788 KB Output is correct
66 Correct 65 ms 11352 KB Output is correct
67 Correct 56 ms 12024 KB Output is correct
68 Correct 82 ms 26288 KB Output is correct
69 Correct 168 ms 32064 KB Output is correct
70 Correct 19 ms 9048 KB Output is correct
71 Correct 84 ms 26468 KB Output is correct
72 Correct 139 ms 30540 KB Output is correct
73 Correct 15 ms 8732 KB Output is correct
74 Correct 78 ms 19544 KB Output is correct
75 Correct 158 ms 32916 KB Output is correct
76 Correct 13 ms 8540 KB Output is correct
77 Correct 76 ms 19340 KB Output is correct
78 Correct 133 ms 27164 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 10708 KB Output is correct
2 Correct 38 ms 9456 KB Output is correct
3 Correct 14 ms 8788 KB Output is correct
4 Correct 26 ms 8880 KB Output is correct
5 Correct 223 ms 30532 KB Output is correct
6 Correct 181 ms 31420 KB Output is correct
7 Correct 187 ms 29900 KB Output is correct
8 Correct 150 ms 30580 KB Output is correct
9 Correct 226 ms 30728 KB Output is correct
10 Correct 183 ms 29188 KB Output is correct
11 Correct 144 ms 28460 KB Output is correct
12 Correct 128 ms 30388 KB Output is correct
13 Correct 135 ms 11484 KB Output is correct
14 Correct 171 ms 29392 KB Output is correct
15 Correct 155 ms 31024 KB Output is correct
16 Correct 63 ms 18632 KB Output is correct
17 Correct 71 ms 27016 KB Output is correct
18 Correct 159 ms 30272 KB Output is correct
19 Correct 81 ms 28228 KB Output is correct
20 Correct 76 ms 27764 KB Output is correct
21 Correct 147 ms 30008 KB Output is correct
22 Correct 65 ms 19152 KB Output is correct
23 Correct 70 ms 25944 KB Output is correct
24 Correct 156 ms 32272 KB Output is correct
25 Correct 63 ms 26336 KB Output is correct
26 Correct 66 ms 27284 KB Output is correct
27 Correct 158 ms 30188 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 6 ms 8536 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 7 ms 6492 KB Output is correct
6 Correct 4 ms 8536 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 7 ms 8552 KB Output is correct
15 Correct 3 ms 8280 KB Output is correct
16 Correct 4 ms 8692 KB Output is correct
17 Correct 7 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8536 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 5 ms 8284 KB Output is correct
25 Correct 4 ms 8280 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8780 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 58 ms 27228 KB Output is correct
30 Correct 60 ms 26632 KB Output is correct
31 Correct 60 ms 26036 KB Output is correct
32 Correct 61 ms 27832 KB Output is correct
33 Correct 55 ms 17972 KB Output is correct
34 Correct 52 ms 17328 KB Output is correct
35 Correct 69 ms 25924 KB Output is correct
36 Correct 55 ms 26032 KB Output is correct
37 Correct 14 ms 8540 KB Output is correct
38 Correct 80 ms 25752 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 40 ms 9688 KB Output is correct
41 Correct 72 ms 27648 KB Output is correct
42 Correct 60 ms 25780 KB Output is correct
43 Correct 13 ms 8792 KB Output is correct
44 Correct 60 ms 25564 KB Output is correct
45 Correct 62 ms 27036 KB Output is correct
46 Correct 22 ms 9180 KB Output is correct
47 Correct 77 ms 26808 KB Output is correct
48 Correct 59 ms 27312 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 59 ms 18368 KB Output is correct
51 Correct 59 ms 26556 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 12 ms 8620 KB Output is correct
54 Correct 52 ms 18112 KB Output is correct
55 Correct 51 ms 18216 KB Output is correct
56 Correct 144 ms 32048 KB Output is correct
57 Correct 129 ms 30020 KB Output is correct
58 Correct 169 ms 30916 KB Output is correct
59 Correct 146 ms 29496 KB Output is correct
60 Correct 171 ms 24244 KB Output is correct
61 Correct 180 ms 32644 KB Output is correct
62 Correct 170 ms 27868 KB Output is correct
63 Correct 133 ms 24596 KB Output is correct
64 Correct 58 ms 7872 KB Output is correct
65 Correct 160 ms 30788 KB Output is correct
66 Correct 65 ms 11352 KB Output is correct
67 Correct 56 ms 12024 KB Output is correct
68 Correct 82 ms 26288 KB Output is correct
69 Correct 168 ms 32064 KB Output is correct
70 Correct 19 ms 9048 KB Output is correct
71 Correct 84 ms 26468 KB Output is correct
72 Correct 139 ms 30540 KB Output is correct
73 Correct 15 ms 8732 KB Output is correct
74 Correct 78 ms 19544 KB Output is correct
75 Correct 158 ms 32916 KB Output is correct
76 Correct 13 ms 8540 KB Output is correct
77 Correct 76 ms 19340 KB Output is correct
78 Correct 133 ms 27164 KB Output is correct
79 Correct 46 ms 10708 KB Output is correct
80 Correct 38 ms 9456 KB Output is correct
81 Correct 14 ms 8788 KB Output is correct
82 Correct 26 ms 8880 KB Output is correct
83 Correct 223 ms 30532 KB Output is correct
84 Correct 181 ms 31420 KB Output is correct
85 Correct 187 ms 29900 KB Output is correct
86 Correct 150 ms 30580 KB Output is correct
87 Correct 226 ms 30728 KB Output is correct
88 Correct 183 ms 29188 KB Output is correct
89 Correct 144 ms 28460 KB Output is correct
90 Correct 128 ms 30388 KB Output is correct
91 Correct 135 ms 11484 KB Output is correct
92 Correct 171 ms 29392 KB Output is correct
93 Correct 155 ms 31024 KB Output is correct
94 Correct 63 ms 18632 KB Output is correct
95 Correct 71 ms 27016 KB Output is correct
96 Correct 159 ms 30272 KB Output is correct
97 Correct 81 ms 28228 KB Output is correct
98 Correct 76 ms 27764 KB Output is correct
99 Correct 147 ms 30008 KB Output is correct
100 Correct 65 ms 19152 KB Output is correct
101 Correct 70 ms 25944 KB Output is correct
102 Correct 156 ms 32272 KB Output is correct
103 Correct 63 ms 26336 KB Output is correct
104 Correct 66 ms 27284 KB Output is correct
105 Correct 158 ms 30188 KB Output is correct
106 Correct 39 ms 9176 KB Output is correct
107 Correct 59 ms 10836 KB Output is correct
108 Correct 40 ms 9680 KB Output is correct
109 Correct 43 ms 10744 KB Output is correct
110 Correct 183 ms 31700 KB Output is correct
111 Correct 188 ms 30760 KB Output is correct
112 Correct 178 ms 30492 KB Output is correct
113 Correct 183 ms 31168 KB Output is correct
114 Correct 188 ms 32324 KB Output is correct
115 Correct 181 ms 32196 KB Output is correct
116 Correct 188 ms 46040 KB Output is correct
117 Correct 138 ms 28708 KB Output is correct
118 Correct 114 ms 14404 KB Output is correct
119 Correct 79 ms 11356 KB Output is correct
120 Correct 182 ms 30264 KB Output is correct
121 Correct 72 ms 26552 KB Output is correct
122 Correct 77 ms 26328 KB Output is correct
123 Correct 184 ms 31796 KB Output is correct
124 Correct 65 ms 18364 KB Output is correct
125 Correct 96 ms 28084 KB Output is correct
126 Correct 175 ms 29940 KB Output is correct
127 Correct 65 ms 14544 KB Output is correct
128 Correct 73 ms 23664 KB Output is correct
129 Correct 204 ms 32232 KB Output is correct
130 Correct 72 ms 26756 KB Output is correct
131 Correct 110 ms 26432 KB Output is correct
132 Correct 157 ms 29580 KB Output is correct