Submission #987952

# Submission time Handle Problem Language Result Execution time Memory
987952 2024-05-23T19:43:12 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
203 ms 46156 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8512 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8108 KB Output is correct
13 Correct 3 ms 8540 KB Output is correct
14 Correct 5 ms 8536 KB Output is correct
15 Correct 3 ms 8364 KB Output is correct
16 Correct 4 ms 8536 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8116 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 63 ms 26332 KB Output is correct
2 Correct 59 ms 27308 KB Output is correct
3 Correct 58 ms 26804 KB Output is correct
4 Correct 57 ms 26796 KB Output is correct
5 Correct 53 ms 17864 KB Output is correct
6 Correct 53 ms 19132 KB Output is correct
7 Correct 58 ms 26988 KB Output is correct
8 Correct 55 ms 26288 KB Output is correct
9 Correct 12 ms 8536 KB Output is correct
10 Correct 57 ms 27100 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 27 ms 9684 KB Output is correct
13 Correct 61 ms 27068 KB Output is correct
14 Correct 57 ms 26712 KB Output is correct
15 Correct 12 ms 8792 KB Output is correct
16 Correct 61 ms 25776 KB Output is correct
17 Correct 58 ms 27760 KB Output is correct
18 Correct 20 ms 9180 KB Output is correct
19 Correct 63 ms 27624 KB Output is correct
20 Correct 58 ms 27308 KB Output is correct
21 Correct 13 ms 8796 KB Output is correct
22 Correct 54 ms 17004 KB Output is correct
23 Correct 56 ms 26544 KB Output is correct
24 Correct 12 ms 8536 KB Output is correct
25 Correct 13 ms 8580 KB Output is correct
26 Correct 49 ms 18876 KB Output is correct
27 Correct 47 ms 18256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8512 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8108 KB Output is correct
13 Correct 3 ms 8540 KB Output is correct
14 Correct 5 ms 8536 KB Output is correct
15 Correct 3 ms 8364 KB Output is correct
16 Correct 4 ms 8536 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8116 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 63 ms 26332 KB Output is correct
30 Correct 59 ms 27308 KB Output is correct
31 Correct 58 ms 26804 KB Output is correct
32 Correct 57 ms 26796 KB Output is correct
33 Correct 53 ms 17864 KB Output is correct
34 Correct 53 ms 19132 KB Output is correct
35 Correct 58 ms 26988 KB Output is correct
36 Correct 55 ms 26288 KB Output is correct
37 Correct 12 ms 8536 KB Output is correct
38 Correct 57 ms 27100 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 27 ms 9684 KB Output is correct
41 Correct 61 ms 27068 KB Output is correct
42 Correct 57 ms 26712 KB Output is correct
43 Correct 12 ms 8792 KB Output is correct
44 Correct 61 ms 25776 KB Output is correct
45 Correct 58 ms 27760 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 63 ms 27624 KB Output is correct
48 Correct 58 ms 27308 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 54 ms 17004 KB Output is correct
51 Correct 56 ms 26544 KB Output is correct
52 Correct 12 ms 8536 KB Output is correct
53 Correct 13 ms 8580 KB Output is correct
54 Correct 49 ms 18876 KB Output is correct
55 Correct 47 ms 18256 KB Output is correct
56 Correct 133 ms 32956 KB Output is correct
57 Correct 128 ms 31524 KB Output is correct
58 Correct 140 ms 32820 KB Output is correct
59 Correct 119 ms 29848 KB Output is correct
60 Correct 141 ms 24708 KB Output is correct
61 Correct 129 ms 31808 KB Output is correct
62 Correct 125 ms 29104 KB Output is correct
63 Correct 114 ms 27120 KB Output is correct
64 Correct 55 ms 10972 KB Output is correct
65 Correct 121 ms 30532 KB Output is correct
66 Correct 48 ms 11356 KB Output is correct
67 Correct 49 ms 12228 KB Output is correct
68 Correct 70 ms 27760 KB Output is correct
69 Correct 132 ms 31184 KB Output is correct
70 Correct 14 ms 9052 KB Output is correct
71 Correct 72 ms 27884 KB Output is correct
72 Correct 127 ms 30524 KB Output is correct
73 Correct 13 ms 8796 KB Output is correct
74 Correct 65 ms 18892 KB Output is correct
75 Correct 143 ms 33288 KB Output is correct
76 Correct 12 ms 8536 KB Output is correct
77 Correct 58 ms 19136 KB Output is correct
78 Correct 101 ms 26760 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 10708 KB Output is correct
2 Correct 36 ms 9760 KB Output is correct
3 Correct 13 ms 8796 KB Output is correct
4 Correct 14 ms 9052 KB Output is correct
5 Correct 164 ms 32276 KB Output is correct
6 Correct 141 ms 31116 KB Output is correct
7 Correct 139 ms 31536 KB Output is correct
8 Correct 153 ms 30512 KB Output is correct
9 Correct 153 ms 32572 KB Output is correct
10 Correct 141 ms 29740 KB Output is correct
11 Correct 156 ms 29232 KB Output is correct
12 Correct 118 ms 30116 KB Output is correct
13 Correct 101 ms 12384 KB Output is correct
14 Correct 152 ms 30148 KB Output is correct
15 Correct 144 ms 29752 KB Output is correct
16 Correct 59 ms 19396 KB Output is correct
17 Correct 70 ms 27912 KB Output is correct
18 Correct 161 ms 30424 KB Output is correct
19 Correct 66 ms 26296 KB Output is correct
20 Correct 68 ms 26300 KB Output is correct
21 Correct 137 ms 28856 KB Output is correct
22 Correct 62 ms 19152 KB Output is correct
23 Correct 73 ms 27064 KB Output is correct
24 Correct 174 ms 32812 KB Output is correct
25 Correct 62 ms 27560 KB Output is correct
26 Correct 73 ms 23472 KB Output is correct
27 Correct 143 ms 27368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8512 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8108 KB Output is correct
13 Correct 3 ms 8540 KB Output is correct
14 Correct 5 ms 8536 KB Output is correct
15 Correct 3 ms 8364 KB Output is correct
16 Correct 4 ms 8536 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8116 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 63 ms 26332 KB Output is correct
30 Correct 59 ms 27308 KB Output is correct
31 Correct 58 ms 26804 KB Output is correct
32 Correct 57 ms 26796 KB Output is correct
33 Correct 53 ms 17864 KB Output is correct
34 Correct 53 ms 19132 KB Output is correct
35 Correct 58 ms 26988 KB Output is correct
36 Correct 55 ms 26288 KB Output is correct
37 Correct 12 ms 8536 KB Output is correct
38 Correct 57 ms 27100 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 27 ms 9684 KB Output is correct
41 Correct 61 ms 27068 KB Output is correct
42 Correct 57 ms 26712 KB Output is correct
43 Correct 12 ms 8792 KB Output is correct
44 Correct 61 ms 25776 KB Output is correct
45 Correct 58 ms 27760 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 63 ms 27624 KB Output is correct
48 Correct 58 ms 27308 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 54 ms 17004 KB Output is correct
51 Correct 56 ms 26544 KB Output is correct
52 Correct 12 ms 8536 KB Output is correct
53 Correct 13 ms 8580 KB Output is correct
54 Correct 49 ms 18876 KB Output is correct
55 Correct 47 ms 18256 KB Output is correct
56 Correct 133 ms 32956 KB Output is correct
57 Correct 128 ms 31524 KB Output is correct
58 Correct 140 ms 32820 KB Output is correct
59 Correct 119 ms 29848 KB Output is correct
60 Correct 141 ms 24708 KB Output is correct
61 Correct 129 ms 31808 KB Output is correct
62 Correct 125 ms 29104 KB Output is correct
63 Correct 114 ms 27120 KB Output is correct
64 Correct 55 ms 10972 KB Output is correct
65 Correct 121 ms 30532 KB Output is correct
66 Correct 48 ms 11356 KB Output is correct
67 Correct 49 ms 12228 KB Output is correct
68 Correct 70 ms 27760 KB Output is correct
69 Correct 132 ms 31184 KB Output is correct
70 Correct 14 ms 9052 KB Output is correct
71 Correct 72 ms 27884 KB Output is correct
72 Correct 127 ms 30524 KB Output is correct
73 Correct 13 ms 8796 KB Output is correct
74 Correct 65 ms 18892 KB Output is correct
75 Correct 143 ms 33288 KB Output is correct
76 Correct 12 ms 8536 KB Output is correct
77 Correct 58 ms 19136 KB Output is correct
78 Correct 101 ms 26760 KB Output is correct
79 Correct 40 ms 10708 KB Output is correct
80 Correct 36 ms 9760 KB Output is correct
81 Correct 13 ms 8796 KB Output is correct
82 Correct 14 ms 9052 KB Output is correct
83 Correct 164 ms 32276 KB Output is correct
84 Correct 141 ms 31116 KB Output is correct
85 Correct 139 ms 31536 KB Output is correct
86 Correct 153 ms 30512 KB Output is correct
87 Correct 153 ms 32572 KB Output is correct
88 Correct 141 ms 29740 KB Output is correct
89 Correct 156 ms 29232 KB Output is correct
90 Correct 118 ms 30116 KB Output is correct
91 Correct 101 ms 12384 KB Output is correct
92 Correct 152 ms 30148 KB Output is correct
93 Correct 144 ms 29752 KB Output is correct
94 Correct 59 ms 19396 KB Output is correct
95 Correct 70 ms 27912 KB Output is correct
96 Correct 161 ms 30424 KB Output is correct
97 Correct 66 ms 26296 KB Output is correct
98 Correct 68 ms 26300 KB Output is correct
99 Correct 137 ms 28856 KB Output is correct
100 Correct 62 ms 19152 KB Output is correct
101 Correct 73 ms 27064 KB Output is correct
102 Correct 174 ms 32812 KB Output is correct
103 Correct 62 ms 27560 KB Output is correct
104 Correct 73 ms 23472 KB Output is correct
105 Correct 143 ms 27368 KB Output is correct
106 Correct 51 ms 6360 KB Output is correct
107 Correct 43 ms 7880 KB Output is correct
108 Correct 39 ms 6784 KB Output is correct
109 Correct 42 ms 10700 KB Output is correct
110 Correct 186 ms 31936 KB Output is correct
111 Correct 178 ms 30664 KB Output is correct
112 Correct 203 ms 30896 KB Output is correct
113 Correct 167 ms 31016 KB Output is correct
114 Correct 181 ms 31912 KB Output is correct
115 Correct 195 ms 30780 KB Output is correct
116 Correct 196 ms 46156 KB Output is correct
117 Correct 147 ms 28292 KB Output is correct
118 Correct 119 ms 14460 KB Output is correct
119 Correct 55 ms 11416 KB Output is correct
120 Correct 180 ms 31752 KB Output is correct
121 Correct 86 ms 26552 KB Output is correct
122 Correct 86 ms 26480 KB Output is correct
123 Correct 186 ms 30632 KB Output is correct
124 Correct 70 ms 18360 KB Output is correct
125 Correct 121 ms 26300 KB Output is correct
126 Correct 179 ms 30136 KB Output is correct
127 Correct 68 ms 18380 KB Output is correct
128 Correct 74 ms 26672 KB Output is correct
129 Correct 178 ms 32120 KB Output is correct
130 Correct 82 ms 27904 KB Output is correct
131 Correct 98 ms 26588 KB Output is correct
132 Correct 173 ms 30168 KB Output is correct