Submission #987933

# Submission time Handle Problem Language Result Execution time Memory
987933 2024-05-23T19:38:05 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
230 ms 47140 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 7 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8536 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 5980 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8368 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 6 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8624 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 5 ms 8280 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 62 ms 27832 KB Output is correct
2 Correct 63 ms 22972 KB Output is correct
3 Correct 67 ms 25896 KB Output is correct
4 Correct 70 ms 26168 KB Output is correct
5 Correct 53 ms 15536 KB Output is correct
6 Correct 52 ms 17856 KB Output is correct
7 Correct 66 ms 26900 KB Output is correct
8 Correct 55 ms 25776 KB Output is correct
9 Correct 14 ms 8536 KB Output is correct
10 Correct 66 ms 25772 KB Output is correct
11 Correct 20 ms 6488 KB Output is correct
12 Correct 28 ms 9688 KB Output is correct
13 Correct 84 ms 23480 KB Output is correct
14 Correct 66 ms 27640 KB Output is correct
15 Correct 15 ms 8792 KB Output is correct
16 Correct 66 ms 27156 KB Output is correct
17 Correct 72 ms 27312 KB Output is correct
18 Correct 21 ms 9180 KB Output is correct
19 Correct 74 ms 26040 KB Output is correct
20 Correct 64 ms 27568 KB Output is correct
21 Correct 14 ms 8700 KB Output is correct
22 Correct 59 ms 17276 KB Output is correct
23 Correct 68 ms 26516 KB Output is correct
24 Correct 13 ms 8540 KB Output is correct
25 Correct 14 ms 8772 KB Output is correct
26 Correct 51 ms 19408 KB Output is correct
27 Correct 50 ms 17608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 7 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8536 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 5980 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8368 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 6 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8624 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 5 ms 8280 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 62 ms 27832 KB Output is correct
30 Correct 63 ms 22972 KB Output is correct
31 Correct 67 ms 25896 KB Output is correct
32 Correct 70 ms 26168 KB Output is correct
33 Correct 53 ms 15536 KB Output is correct
34 Correct 52 ms 17856 KB Output is correct
35 Correct 66 ms 26900 KB Output is correct
36 Correct 55 ms 25776 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 66 ms 25772 KB Output is correct
39 Correct 20 ms 6488 KB Output is correct
40 Correct 28 ms 9688 KB Output is correct
41 Correct 84 ms 23480 KB Output is correct
42 Correct 66 ms 27640 KB Output is correct
43 Correct 15 ms 8792 KB Output is correct
44 Correct 66 ms 27156 KB Output is correct
45 Correct 72 ms 27312 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 74 ms 26040 KB Output is correct
48 Correct 64 ms 27568 KB Output is correct
49 Correct 14 ms 8700 KB Output is correct
50 Correct 59 ms 17276 KB Output is correct
51 Correct 68 ms 26516 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 14 ms 8772 KB Output is correct
54 Correct 51 ms 19408 KB Output is correct
55 Correct 50 ms 17608 KB Output is correct
56 Correct 165 ms 32288 KB Output is correct
57 Correct 144 ms 31048 KB Output is correct
58 Correct 139 ms 31672 KB Output is correct
59 Correct 122 ms 30780 KB Output is correct
60 Correct 143 ms 24464 KB Output is correct
61 Correct 140 ms 32188 KB Output is correct
62 Correct 116 ms 28176 KB Output is correct
63 Correct 142 ms 26740 KB Output is correct
64 Correct 54 ms 10956 KB Output is correct
65 Correct 126 ms 30988 KB Output is correct
66 Correct 50 ms 11348 KB Output is correct
67 Correct 49 ms 12240 KB Output is correct
68 Correct 69 ms 26548 KB Output is correct
69 Correct 144 ms 30512 KB Output is correct
70 Correct 16 ms 6880 KB Output is correct
71 Correct 84 ms 24544 KB Output is correct
72 Correct 133 ms 27404 KB Output is correct
73 Correct 21 ms 6748 KB Output is correct
74 Correct 80 ms 15792 KB Output is correct
75 Correct 148 ms 33104 KB Output is correct
76 Correct 14 ms 8680 KB Output is correct
77 Correct 69 ms 18892 KB Output is correct
78 Correct 114 ms 28084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 10712 KB Output is correct
2 Correct 40 ms 9432 KB Output is correct
3 Correct 18 ms 8656 KB Output is correct
4 Correct 15 ms 8796 KB Output is correct
5 Correct 192 ms 31860 KB Output is correct
6 Correct 168 ms 29408 KB Output is correct
7 Correct 173 ms 31140 KB Output is correct
8 Correct 170 ms 29156 KB Output is correct
9 Correct 173 ms 31792 KB Output is correct
10 Correct 168 ms 29104 KB Output is correct
11 Correct 148 ms 27712 KB Output is correct
12 Correct 126 ms 27856 KB Output is correct
13 Correct 133 ms 11768 KB Output is correct
14 Correct 164 ms 29316 KB Output is correct
15 Correct 186 ms 30172 KB Output is correct
16 Correct 70 ms 18804 KB Output is correct
17 Correct 76 ms 25956 KB Output is correct
18 Correct 166 ms 29776 KB Output is correct
19 Correct 73 ms 27832 KB Output is correct
20 Correct 88 ms 27152 KB Output is correct
21 Correct 144 ms 28728 KB Output is correct
22 Correct 73 ms 18344 KB Output is correct
23 Correct 80 ms 25928 KB Output is correct
24 Correct 198 ms 30652 KB Output is correct
25 Correct 73 ms 26500 KB Output is correct
26 Correct 72 ms 26812 KB Output is correct
27 Correct 149 ms 28692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 7 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8536 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 5980 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8368 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 6 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8624 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 5 ms 8280 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 62 ms 27832 KB Output is correct
30 Correct 63 ms 22972 KB Output is correct
31 Correct 67 ms 25896 KB Output is correct
32 Correct 70 ms 26168 KB Output is correct
33 Correct 53 ms 15536 KB Output is correct
34 Correct 52 ms 17856 KB Output is correct
35 Correct 66 ms 26900 KB Output is correct
36 Correct 55 ms 25776 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 66 ms 25772 KB Output is correct
39 Correct 20 ms 6488 KB Output is correct
40 Correct 28 ms 9688 KB Output is correct
41 Correct 84 ms 23480 KB Output is correct
42 Correct 66 ms 27640 KB Output is correct
43 Correct 15 ms 8792 KB Output is correct
44 Correct 66 ms 27156 KB Output is correct
45 Correct 72 ms 27312 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 74 ms 26040 KB Output is correct
48 Correct 64 ms 27568 KB Output is correct
49 Correct 14 ms 8700 KB Output is correct
50 Correct 59 ms 17276 KB Output is correct
51 Correct 68 ms 26516 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 14 ms 8772 KB Output is correct
54 Correct 51 ms 19408 KB Output is correct
55 Correct 50 ms 17608 KB Output is correct
56 Correct 165 ms 32288 KB Output is correct
57 Correct 144 ms 31048 KB Output is correct
58 Correct 139 ms 31672 KB Output is correct
59 Correct 122 ms 30780 KB Output is correct
60 Correct 143 ms 24464 KB Output is correct
61 Correct 140 ms 32188 KB Output is correct
62 Correct 116 ms 28176 KB Output is correct
63 Correct 142 ms 26740 KB Output is correct
64 Correct 54 ms 10956 KB Output is correct
65 Correct 126 ms 30988 KB Output is correct
66 Correct 50 ms 11348 KB Output is correct
67 Correct 49 ms 12240 KB Output is correct
68 Correct 69 ms 26548 KB Output is correct
69 Correct 144 ms 30512 KB Output is correct
70 Correct 16 ms 6880 KB Output is correct
71 Correct 84 ms 24544 KB Output is correct
72 Correct 133 ms 27404 KB Output is correct
73 Correct 21 ms 6748 KB Output is correct
74 Correct 80 ms 15792 KB Output is correct
75 Correct 148 ms 33104 KB Output is correct
76 Correct 14 ms 8680 KB Output is correct
77 Correct 69 ms 18892 KB Output is correct
78 Correct 114 ms 28084 KB Output is correct
79 Correct 46 ms 10712 KB Output is correct
80 Correct 40 ms 9432 KB Output is correct
81 Correct 18 ms 8656 KB Output is correct
82 Correct 15 ms 8796 KB Output is correct
83 Correct 192 ms 31860 KB Output is correct
84 Correct 168 ms 29408 KB Output is correct
85 Correct 173 ms 31140 KB Output is correct
86 Correct 170 ms 29156 KB Output is correct
87 Correct 173 ms 31792 KB Output is correct
88 Correct 168 ms 29104 KB Output is correct
89 Correct 148 ms 27712 KB Output is correct
90 Correct 126 ms 27856 KB Output is correct
91 Correct 133 ms 11768 KB Output is correct
92 Correct 164 ms 29316 KB Output is correct
93 Correct 186 ms 30172 KB Output is correct
94 Correct 70 ms 18804 KB Output is correct
95 Correct 76 ms 25956 KB Output is correct
96 Correct 166 ms 29776 KB Output is correct
97 Correct 73 ms 27832 KB Output is correct
98 Correct 88 ms 27152 KB Output is correct
99 Correct 144 ms 28728 KB Output is correct
100 Correct 73 ms 18344 KB Output is correct
101 Correct 80 ms 25928 KB Output is correct
102 Correct 198 ms 30652 KB Output is correct
103 Correct 73 ms 26500 KB Output is correct
104 Correct 72 ms 26812 KB Output is correct
105 Correct 149 ms 28692 KB Output is correct
106 Correct 50 ms 6368 KB Output is correct
107 Correct 47 ms 7876 KB Output is correct
108 Correct 39 ms 6900 KB Output is correct
109 Correct 53 ms 7800 KB Output is correct
110 Correct 207 ms 31540 KB Output is correct
111 Correct 217 ms 30692 KB Output is correct
112 Correct 226 ms 30416 KB Output is correct
113 Correct 204 ms 29620 KB Output is correct
114 Correct 230 ms 31872 KB Output is correct
115 Correct 216 ms 30220 KB Output is correct
116 Correct 204 ms 47140 KB Output is correct
117 Correct 159 ms 30136 KB Output is correct
118 Correct 113 ms 14412 KB Output is correct
119 Correct 111 ms 10504 KB Output is correct
120 Correct 218 ms 30820 KB Output is correct
121 Correct 76 ms 26552 KB Output is correct
122 Correct 103 ms 27908 KB Output is correct
123 Correct 208 ms 30720 KB Output is correct
124 Correct 84 ms 16308 KB Output is correct
125 Correct 99 ms 26112 KB Output is correct
126 Correct 172 ms 31084 KB Output is correct
127 Correct 74 ms 17680 KB Output is correct
128 Correct 84 ms 24844 KB Output is correct
129 Correct 230 ms 32260 KB Output is correct
130 Correct 92 ms 24244 KB Output is correct
131 Correct 95 ms 26292 KB Output is correct
132 Correct 158 ms 27644 KB Output is correct