Submission #987930

# Submission time Handle Problem Language Result Execution time Memory
987930 2024-05-23T19:36:16 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
162 ms 46256 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8536 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8584 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8024 KB Output is correct
10 Correct 4 ms 8616 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8280 KB Output is correct
13 Correct 3 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8536 KB Output is correct
18 Correct 3 ms 8268 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 6 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8536 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 27828 KB Output is correct
2 Correct 68 ms 27568 KB Output is correct
3 Correct 70 ms 27828 KB Output is correct
4 Correct 68 ms 26796 KB Output is correct
5 Correct 51 ms 18888 KB Output is correct
6 Correct 51 ms 18364 KB Output is correct
7 Correct 58 ms 27312 KB Output is correct
8 Correct 59 ms 26740 KB Output is correct
9 Correct 14 ms 8536 KB Output is correct
10 Correct 58 ms 27232 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 28 ms 9680 KB Output is correct
13 Correct 59 ms 25528 KB Output is correct
14 Correct 59 ms 27828 KB Output is correct
15 Correct 14 ms 8796 KB Output is correct
16 Correct 58 ms 25576 KB Output is correct
17 Correct 60 ms 26300 KB Output is correct
18 Correct 22 ms 9176 KB Output is correct
19 Correct 66 ms 26776 KB Output is correct
20 Correct 62 ms 26620 KB Output is correct
21 Correct 14 ms 8796 KB Output is correct
22 Correct 53 ms 17360 KB Output is correct
23 Correct 55 ms 26384 KB Output is correct
24 Correct 13 ms 8540 KB Output is correct
25 Correct 13 ms 8540 KB Output is correct
26 Correct 52 ms 19388 KB Output is correct
27 Correct 49 ms 19384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8536 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8584 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8024 KB Output is correct
10 Correct 4 ms 8616 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8280 KB Output is correct
13 Correct 3 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8536 KB Output is correct
18 Correct 3 ms 8268 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 6 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8536 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 60 ms 27828 KB Output is correct
30 Correct 68 ms 27568 KB Output is correct
31 Correct 70 ms 27828 KB Output is correct
32 Correct 68 ms 26796 KB Output is correct
33 Correct 51 ms 18888 KB Output is correct
34 Correct 51 ms 18364 KB Output is correct
35 Correct 58 ms 27312 KB Output is correct
36 Correct 59 ms 26740 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 58 ms 27232 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 28 ms 9680 KB Output is correct
41 Correct 59 ms 25528 KB Output is correct
42 Correct 59 ms 27828 KB Output is correct
43 Correct 14 ms 8796 KB Output is correct
44 Correct 58 ms 25576 KB Output is correct
45 Correct 60 ms 26300 KB Output is correct
46 Correct 22 ms 9176 KB Output is correct
47 Correct 66 ms 26776 KB Output is correct
48 Correct 62 ms 26620 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 53 ms 17360 KB Output is correct
51 Correct 55 ms 26384 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 52 ms 19388 KB Output is correct
55 Correct 49 ms 19384 KB Output is correct
56 Correct 157 ms 33556 KB Output is correct
57 Correct 130 ms 30492 KB Output is correct
58 Correct 132 ms 32060 KB Output is correct
59 Correct 117 ms 30772 KB Output is correct
60 Correct 128 ms 24112 KB Output is correct
61 Correct 125 ms 31548 KB Output is correct
62 Correct 122 ms 28424 KB Output is correct
63 Correct 104 ms 27224 KB Output is correct
64 Correct 61 ms 10808 KB Output is correct
65 Correct 124 ms 30512 KB Output is correct
66 Correct 49 ms 11356 KB Output is correct
67 Correct 50 ms 12320 KB Output is correct
68 Correct 69 ms 26800 KB Output is correct
69 Correct 133 ms 32316 KB Output is correct
70 Correct 16 ms 9052 KB Output is correct
71 Correct 70 ms 27600 KB Output is correct
72 Correct 115 ms 30508 KB Output is correct
73 Correct 14 ms 8796 KB Output is correct
74 Correct 62 ms 18620 KB Output is correct
75 Correct 144 ms 33116 KB Output is correct
76 Correct 14 ms 8540 KB Output is correct
77 Correct 58 ms 18232 KB Output is correct
78 Correct 101 ms 28064 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 10700 KB Output is correct
2 Correct 37 ms 9436 KB Output is correct
3 Correct 15 ms 8792 KB Output is correct
4 Correct 14 ms 8796 KB Output is correct
5 Correct 144 ms 31752 KB Output is correct
6 Correct 143 ms 30780 KB Output is correct
7 Correct 146 ms 31284 KB Output is correct
8 Correct 144 ms 29484 KB Output is correct
9 Correct 144 ms 32048 KB Output is correct
10 Correct 139 ms 30532 KB Output is correct
11 Correct 135 ms 28724 KB Output is correct
12 Correct 121 ms 30472 KB Output is correct
13 Correct 99 ms 12396 KB Output is correct
14 Correct 150 ms 30452 KB Output is correct
15 Correct 151 ms 29464 KB Output is correct
16 Correct 61 ms 18016 KB Output is correct
17 Correct 68 ms 26036 KB Output is correct
18 Correct 146 ms 29844 KB Output is correct
19 Correct 67 ms 26460 KB Output is correct
20 Correct 68 ms 26576 KB Output is correct
21 Correct 137 ms 30376 KB Output is correct
22 Correct 60 ms 19140 KB Output is correct
23 Correct 70 ms 27272 KB Output is correct
24 Correct 151 ms 32488 KB Output is correct
25 Correct 57 ms 26556 KB Output is correct
26 Correct 58 ms 27504 KB Output is correct
27 Correct 123 ms 30196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8536 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8584 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 5 ms 8536 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8024 KB Output is correct
10 Correct 4 ms 8616 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8280 KB Output is correct
13 Correct 3 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8536 KB Output is correct
18 Correct 3 ms 8268 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 6 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8536 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 60 ms 27828 KB Output is correct
30 Correct 68 ms 27568 KB Output is correct
31 Correct 70 ms 27828 KB Output is correct
32 Correct 68 ms 26796 KB Output is correct
33 Correct 51 ms 18888 KB Output is correct
34 Correct 51 ms 18364 KB Output is correct
35 Correct 58 ms 27312 KB Output is correct
36 Correct 59 ms 26740 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 58 ms 27232 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 28 ms 9680 KB Output is correct
41 Correct 59 ms 25528 KB Output is correct
42 Correct 59 ms 27828 KB Output is correct
43 Correct 14 ms 8796 KB Output is correct
44 Correct 58 ms 25576 KB Output is correct
45 Correct 60 ms 26300 KB Output is correct
46 Correct 22 ms 9176 KB Output is correct
47 Correct 66 ms 26776 KB Output is correct
48 Correct 62 ms 26620 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 53 ms 17360 KB Output is correct
51 Correct 55 ms 26384 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 52 ms 19388 KB Output is correct
55 Correct 49 ms 19384 KB Output is correct
56 Correct 157 ms 33556 KB Output is correct
57 Correct 130 ms 30492 KB Output is correct
58 Correct 132 ms 32060 KB Output is correct
59 Correct 117 ms 30772 KB Output is correct
60 Correct 128 ms 24112 KB Output is correct
61 Correct 125 ms 31548 KB Output is correct
62 Correct 122 ms 28424 KB Output is correct
63 Correct 104 ms 27224 KB Output is correct
64 Correct 61 ms 10808 KB Output is correct
65 Correct 124 ms 30512 KB Output is correct
66 Correct 49 ms 11356 KB Output is correct
67 Correct 50 ms 12320 KB Output is correct
68 Correct 69 ms 26800 KB Output is correct
69 Correct 133 ms 32316 KB Output is correct
70 Correct 16 ms 9052 KB Output is correct
71 Correct 70 ms 27600 KB Output is correct
72 Correct 115 ms 30508 KB Output is correct
73 Correct 14 ms 8796 KB Output is correct
74 Correct 62 ms 18620 KB Output is correct
75 Correct 144 ms 33116 KB Output is correct
76 Correct 14 ms 8540 KB Output is correct
77 Correct 58 ms 18232 KB Output is correct
78 Correct 101 ms 28064 KB Output is correct
79 Correct 40 ms 10700 KB Output is correct
80 Correct 37 ms 9436 KB Output is correct
81 Correct 15 ms 8792 KB Output is correct
82 Correct 14 ms 8796 KB Output is correct
83 Correct 144 ms 31752 KB Output is correct
84 Correct 143 ms 30780 KB Output is correct
85 Correct 146 ms 31284 KB Output is correct
86 Correct 144 ms 29484 KB Output is correct
87 Correct 144 ms 32048 KB Output is correct
88 Correct 139 ms 30532 KB Output is correct
89 Correct 135 ms 28724 KB Output is correct
90 Correct 121 ms 30472 KB Output is correct
91 Correct 99 ms 12396 KB Output is correct
92 Correct 150 ms 30452 KB Output is correct
93 Correct 151 ms 29464 KB Output is correct
94 Correct 61 ms 18016 KB Output is correct
95 Correct 68 ms 26036 KB Output is correct
96 Correct 146 ms 29844 KB Output is correct
97 Correct 67 ms 26460 KB Output is correct
98 Correct 68 ms 26576 KB Output is correct
99 Correct 137 ms 30376 KB Output is correct
100 Correct 60 ms 19140 KB Output is correct
101 Correct 70 ms 27272 KB Output is correct
102 Correct 151 ms 32488 KB Output is correct
103 Correct 57 ms 26556 KB Output is correct
104 Correct 58 ms 27504 KB Output is correct
105 Correct 123 ms 30196 KB Output is correct
106 Correct 36 ms 9172 KB Output is correct
107 Correct 42 ms 10952 KB Output is correct
108 Correct 41 ms 9872 KB Output is correct
109 Correct 42 ms 10696 KB Output is correct
110 Correct 152 ms 31808 KB Output is correct
111 Correct 155 ms 31100 KB Output is correct
112 Correct 152 ms 31024 KB Output is correct
113 Correct 148 ms 29752 KB Output is correct
114 Correct 157 ms 33708 KB Output is correct
115 Correct 156 ms 31300 KB Output is correct
116 Correct 162 ms 46256 KB Output is correct
117 Correct 133 ms 30328 KB Output is correct
118 Correct 110 ms 14292 KB Output is correct
119 Correct 53 ms 11348 KB Output is correct
120 Correct 154 ms 30000 KB Output is correct
121 Correct 79 ms 26900 KB Output is correct
122 Correct 73 ms 27336 KB Output is correct
123 Correct 155 ms 31016 KB Output is correct
124 Correct 69 ms 18500 KB Output is correct
125 Correct 79 ms 28092 KB Output is correct
126 Correct 142 ms 29964 KB Output is correct
127 Correct 61 ms 18788 KB Output is correct
128 Correct 71 ms 27940 KB Output is correct
129 Correct 149 ms 33836 KB Output is correct
130 Correct 67 ms 27068 KB Output is correct
131 Correct 76 ms 27068 KB Output is correct
132 Correct 140 ms 29284 KB Output is correct