Submission #987929

# Submission time Handle Problem Language Result Execution time Memory
987929 2024-05-23T19:35:07 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
187 ms 46264 KB
///OWNERUL LUI ADI <3
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8536 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8500 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8024 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 6 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8536 KB Output is correct
27 Correct 5 ms 8792 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 55 ms 26548 KB Output is correct
2 Correct 61 ms 26148 KB Output is correct
3 Correct 62 ms 26800 KB Output is correct
4 Correct 56 ms 27068 KB Output is correct
5 Correct 51 ms 18364 KB Output is correct
6 Correct 51 ms 17816 KB Output is correct
7 Correct 58 ms 27056 KB Output is correct
8 Correct 52 ms 26288 KB Output is correct
9 Correct 14 ms 8536 KB Output is correct
10 Correct 57 ms 26288 KB Output is correct
11 Correct 13 ms 8540 KB Output is correct
12 Correct 28 ms 9680 KB Output is correct
13 Correct 70 ms 26272 KB Output is correct
14 Correct 57 ms 26724 KB Output is correct
15 Correct 14 ms 8792 KB Output is correct
16 Correct 59 ms 26300 KB Output is correct
17 Correct 59 ms 26808 KB Output is correct
18 Correct 21 ms 9180 KB Output is correct
19 Correct 57 ms 26004 KB Output is correct
20 Correct 57 ms 26780 KB Output is correct
21 Correct 15 ms 8796 KB Output is correct
22 Correct 53 ms 17468 KB Output is correct
23 Correct 63 ms 26548 KB Output is correct
24 Correct 12 ms 8540 KB Output is correct
25 Correct 12 ms 8536 KB Output is correct
26 Correct 49 ms 19388 KB Output is correct
27 Correct 49 ms 18112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8536 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8500 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8024 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 6 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8536 KB Output is correct
27 Correct 5 ms 8792 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 55 ms 26548 KB Output is correct
30 Correct 61 ms 26148 KB Output is correct
31 Correct 62 ms 26800 KB Output is correct
32 Correct 56 ms 27068 KB Output is correct
33 Correct 51 ms 18364 KB Output is correct
34 Correct 51 ms 17816 KB Output is correct
35 Correct 58 ms 27056 KB Output is correct
36 Correct 52 ms 26288 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 57 ms 26288 KB Output is correct
39 Correct 13 ms 8540 KB Output is correct
40 Correct 28 ms 9680 KB Output is correct
41 Correct 70 ms 26272 KB Output is correct
42 Correct 57 ms 26724 KB Output is correct
43 Correct 14 ms 8792 KB Output is correct
44 Correct 59 ms 26300 KB Output is correct
45 Correct 59 ms 26808 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 57 ms 26004 KB Output is correct
48 Correct 57 ms 26780 KB Output is correct
49 Correct 15 ms 8796 KB Output is correct
50 Correct 53 ms 17468 KB Output is correct
51 Correct 63 ms 26548 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 12 ms 8536 KB Output is correct
54 Correct 49 ms 19388 KB Output is correct
55 Correct 49 ms 18112 KB Output is correct
56 Correct 178 ms 32484 KB Output is correct
57 Correct 128 ms 30272 KB Output is correct
58 Correct 132 ms 32628 KB Output is correct
59 Correct 127 ms 30816 KB Output is correct
60 Correct 130 ms 24104 KB Output is correct
61 Correct 126 ms 30836 KB Output is correct
62 Correct 149 ms 30204 KB Output is correct
63 Correct 102 ms 27672 KB Output is correct
64 Correct 54 ms 10960 KB Output is correct
65 Correct 137 ms 31548 KB Output is correct
66 Correct 60 ms 11336 KB Output is correct
67 Correct 50 ms 12232 KB Output is correct
68 Correct 71 ms 27396 KB Output is correct
69 Correct 130 ms 30580 KB Output is correct
70 Correct 15 ms 9052 KB Output is correct
71 Correct 69 ms 27348 KB Output is correct
72 Correct 121 ms 29240 KB Output is correct
73 Correct 14 ms 8792 KB Output is correct
74 Correct 74 ms 18836 KB Output is correct
75 Correct 135 ms 33596 KB Output is correct
76 Correct 14 ms 8540 KB Output is correct
77 Correct 57 ms 18376 KB Output is correct
78 Correct 99 ms 28340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 10708 KB Output is correct
2 Correct 37 ms 9436 KB Output is correct
3 Correct 15 ms 8792 KB Output is correct
4 Correct 15 ms 8796 KB Output is correct
5 Correct 147 ms 31812 KB Output is correct
6 Correct 154 ms 29748 KB Output is correct
7 Correct 142 ms 29940 KB Output is correct
8 Correct 148 ms 30004 KB Output is correct
9 Correct 156 ms 32168 KB Output is correct
10 Correct 150 ms 29752 KB Output is correct
11 Correct 135 ms 29124 KB Output is correct
12 Correct 118 ms 29356 KB Output is correct
13 Correct 105 ms 12372 KB Output is correct
14 Correct 140 ms 30260 KB Output is correct
15 Correct 146 ms 29352 KB Output is correct
16 Correct 62 ms 18372 KB Output is correct
17 Correct 80 ms 26056 KB Output is correct
18 Correct 166 ms 31316 KB Output is correct
19 Correct 70 ms 27744 KB Output is correct
20 Correct 90 ms 27444 KB Output is correct
21 Correct 148 ms 29728 KB Output is correct
22 Correct 61 ms 19140 KB Output is correct
23 Correct 78 ms 26556 KB Output is correct
24 Correct 148 ms 31740 KB Output is correct
25 Correct 57 ms 27480 KB Output is correct
26 Correct 58 ms 28348 KB Output is correct
27 Correct 129 ms 28968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8536 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8500 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8024 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 6 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8536 KB Output is correct
27 Correct 5 ms 8792 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 55 ms 26548 KB Output is correct
30 Correct 61 ms 26148 KB Output is correct
31 Correct 62 ms 26800 KB Output is correct
32 Correct 56 ms 27068 KB Output is correct
33 Correct 51 ms 18364 KB Output is correct
34 Correct 51 ms 17816 KB Output is correct
35 Correct 58 ms 27056 KB Output is correct
36 Correct 52 ms 26288 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 57 ms 26288 KB Output is correct
39 Correct 13 ms 8540 KB Output is correct
40 Correct 28 ms 9680 KB Output is correct
41 Correct 70 ms 26272 KB Output is correct
42 Correct 57 ms 26724 KB Output is correct
43 Correct 14 ms 8792 KB Output is correct
44 Correct 59 ms 26300 KB Output is correct
45 Correct 59 ms 26808 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 57 ms 26004 KB Output is correct
48 Correct 57 ms 26780 KB Output is correct
49 Correct 15 ms 8796 KB Output is correct
50 Correct 53 ms 17468 KB Output is correct
51 Correct 63 ms 26548 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 12 ms 8536 KB Output is correct
54 Correct 49 ms 19388 KB Output is correct
55 Correct 49 ms 18112 KB Output is correct
56 Correct 178 ms 32484 KB Output is correct
57 Correct 128 ms 30272 KB Output is correct
58 Correct 132 ms 32628 KB Output is correct
59 Correct 127 ms 30816 KB Output is correct
60 Correct 130 ms 24104 KB Output is correct
61 Correct 126 ms 30836 KB Output is correct
62 Correct 149 ms 30204 KB Output is correct
63 Correct 102 ms 27672 KB Output is correct
64 Correct 54 ms 10960 KB Output is correct
65 Correct 137 ms 31548 KB Output is correct
66 Correct 60 ms 11336 KB Output is correct
67 Correct 50 ms 12232 KB Output is correct
68 Correct 71 ms 27396 KB Output is correct
69 Correct 130 ms 30580 KB Output is correct
70 Correct 15 ms 9052 KB Output is correct
71 Correct 69 ms 27348 KB Output is correct
72 Correct 121 ms 29240 KB Output is correct
73 Correct 14 ms 8792 KB Output is correct
74 Correct 74 ms 18836 KB Output is correct
75 Correct 135 ms 33596 KB Output is correct
76 Correct 14 ms 8540 KB Output is correct
77 Correct 57 ms 18376 KB Output is correct
78 Correct 99 ms 28340 KB Output is correct
79 Correct 41 ms 10708 KB Output is correct
80 Correct 37 ms 9436 KB Output is correct
81 Correct 15 ms 8792 KB Output is correct
82 Correct 15 ms 8796 KB Output is correct
83 Correct 147 ms 31812 KB Output is correct
84 Correct 154 ms 29748 KB Output is correct
85 Correct 142 ms 29940 KB Output is correct
86 Correct 148 ms 30004 KB Output is correct
87 Correct 156 ms 32168 KB Output is correct
88 Correct 150 ms 29752 KB Output is correct
89 Correct 135 ms 29124 KB Output is correct
90 Correct 118 ms 29356 KB Output is correct
91 Correct 105 ms 12372 KB Output is correct
92 Correct 140 ms 30260 KB Output is correct
93 Correct 146 ms 29352 KB Output is correct
94 Correct 62 ms 18372 KB Output is correct
95 Correct 80 ms 26056 KB Output is correct
96 Correct 166 ms 31316 KB Output is correct
97 Correct 70 ms 27744 KB Output is correct
98 Correct 90 ms 27444 KB Output is correct
99 Correct 148 ms 29728 KB Output is correct
100 Correct 61 ms 19140 KB Output is correct
101 Correct 78 ms 26556 KB Output is correct
102 Correct 148 ms 31740 KB Output is correct
103 Correct 57 ms 27480 KB Output is correct
104 Correct 58 ms 28348 KB Output is correct
105 Correct 129 ms 28968 KB Output is correct
106 Correct 36 ms 9404 KB Output is correct
107 Correct 42 ms 10936 KB Output is correct
108 Correct 38 ms 9880 KB Output is correct
109 Correct 42 ms 10696 KB Output is correct
110 Correct 187 ms 33676 KB Output is correct
111 Correct 157 ms 30612 KB Output is correct
112 Correct 172 ms 32100 KB Output is correct
113 Correct 165 ms 30008 KB Output is correct
114 Correct 166 ms 31792 KB Output is correct
115 Correct 176 ms 30608 KB Output is correct
116 Correct 163 ms 46264 KB Output is correct
117 Correct 135 ms 29816 KB Output is correct
118 Correct 116 ms 14296 KB Output is correct
119 Correct 50 ms 11352 KB Output is correct
120 Correct 158 ms 30248 KB Output is correct
121 Correct 73 ms 26808 KB Output is correct
122 Correct 76 ms 27832 KB Output is correct
123 Correct 154 ms 31024 KB Output is correct
124 Correct 64 ms 18896 KB Output is correct
125 Correct 76 ms 26548 KB Output is correct
126 Correct 159 ms 30968 KB Output is correct
127 Correct 59 ms 18924 KB Output is correct
128 Correct 69 ms 27832 KB Output is correct
129 Correct 149 ms 32300 KB Output is correct
130 Correct 67 ms 27064 KB Output is correct
131 Correct 72 ms 27584 KB Output is correct
132 Correct 134 ms 30092 KB Output is correct