Submission #985815

# Submission time Handle Problem Language Result Execution time Memory
985815 2024-05-19T01:27:53 Z crimson231 Lonely mdic (kriii1_L) C++17
1 / 1
68 ms 3932 KB
//#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cassert>
#include <vector>
#include <deque>
typedef long long ll;
typedef double ld;
//typedef long double ld;
const ld INF = 1e17;
const ld TOL = 1e-10;
const ld PI = acos(-1);
const int LEN = 305;
int N, M, T, Q;
inline bool zero(const ld& x) { return std::abs(x) < TOL; }
inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; }
inline ll sq(int x) { return (ll)x * x; }
inline ld norm(ld th) {
	while (th < 0) th += PI * 2;
	while (th > PI * 2 - TOL) th -= PI * 2;
	//while (th >= PI * 2) th -= PI * 2;
	return th;
}

//#define DEBUG
//#define ASSERT
struct Pii {
	int x, y;
	Pii(int X = 0, int Y = 0) : x(X), y(Y) {}
	bool operator == (const Pii& p) const { return x == p.x && y == p.y; }
	bool operator != (const Pii& p) const { return x != p.x || y != p.y; }
	bool operator < (const Pii& p) const { return x == p.x ? y < p.y : x < p.x; }
	bool operator <= (const Pii& p) const { return x == p.x ? y <= p.y : x <= p.x; }
	Pii operator + (const Pii& p) const { return { x + p.x, y + p.y }; }
	Pii operator - (const Pii& p) const { return { x - p.x, y - p.y }; }
	Pii operator * (const int& n) const { return { x * n, y * n }; }
	Pii operator / (const int& n) const { return { x / n, y / n }; }
	ll operator * (const Pii& p) const { return { (ll)x * p.x + (ll)y * p.y }; }
	ll operator / (const Pii& p) const { return { (ll)x * p.y - (ll)y * p.x }; }
	Pii& operator += (const Pii& p) { x += p.x; y += p.y; return *this; }
	Pii& operator -= (const Pii& p) { x -= p.x; y -= p.y; return *this; }
	Pii& operator *= (const int& scale) { x *= scale; y *= scale; return *this; }
	Pii& operator /= (const int& scale) { x /= scale; y /= scale; return *this; }
	Pii operator ~ () const { return { -y, x }; }
	Pii operator ! () const { return { -x, -y }; }
	ll xy() const { return (ll)x * y; }
	inline ll Euc() const { return (ll)x * x + (ll)y * y; }
	inline ld rad() const { return norm(atan2(y, x)); }
	int Man() const { return std::abs(x) + std::abs(y); }
	ld mag() const { return hypot(x, y); }
	inline friend std::istream& operator >> (std::istream& is, Pii& p) { is >> p.x >> p.y; return is; }
	friend std::ostream& operator << (std::ostream& os, const Pii& p) { os << p.x << " " << p.y; return os; }
};
const Pii Oii = { 0, 0 };
const Pii INF_PT = { (int)INF, (int)INF };
inline ll cross(const Pii& d1, const Pii& d2, const Pii& d3) { return (d2 - d1) / (d3 - d2); }
inline ll cross(const Pii& d1, const Pii& d2, const Pii& d3, const Pii& d4) { return (d2 - d1) / (d4 - d3); }
inline ll dot(const Pii& d1, const Pii& d2, const Pii& d3) { return (d2 - d1) * (d3 - d2); }
inline ll dot(const Pii& d1, const Pii& d2, const Pii& d3, const Pii& d4) { return (d2 - d1) * (d4 - d3); }
inline int ccw(const Pii& d1, const Pii& d2, const Pii& d3) {
	ll ret = cross(d1, d2, d3);
	return !ret ? 0 : ret > 0 ? 1 : -1;
}
struct Pos {
	ld x, y;
	Pos(ld X = 0, ld Y = 0) : x(X), y(Y) {}
	bool operator == (const Pos& p) const { return zero(x - p.x) && zero(y - p.y); }
	bool operator != (const Pos& p) const { return !zero(x - p.x) || !zero(y - p.y); }
	bool operator < (const Pos& p) const { return zero(x - p.x) ? y < p.y : x < p.x; }
	Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; }
	Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; }
	Pos operator * (const ld& scalar) const { return { x * scalar, y * scalar }; }
	Pos operator / (const ld& scalar) const { return { x / scalar, y / scalar }; }
	ld operator * (const Pos& p) const { return x * p.x + y * p.y; }
	ld operator / (const Pos& p) const { return x * p.y - y * p.x; }
	Pos operator ^ (const Pos& p) const { return { x * p.x, y * p.y }; }
	Pos operator - () const { return { -x, -y }; }
	Pos operator ~ () const { return { -y, x }; }
	Pos operator ! () const { return { y, x }; }
	Pos& operator += (const Pos& p) { x += p.x; y += p.y; return *this; }
	Pos& operator -= (const Pos& p) { x -= p.x; y -= p.y; return *this; }
	Pos& operator *= (const ld& scale) { x *= scale; y *= scale; return *this; }
	Pos& operator /= (const ld& scale) { x /= scale; y /= scale; return *this; }
	ld xy() const { return x * y; }
	inline Pos rot(ld the) const { return Pos(x * cos(the) - y * sin(the), x * sin(the) + y * cos(the)); }
	inline ld Euc() const { return x * x + y * y; }
	ld mag() const { return sqrt(Euc()); }
	//ld mag() const { return hypotl(x, y); }
	Pos unit() const { return *this / mag(); }
	inline ld rad() const { return norm(atan2(y, x)); }
	inline friend ld rad(const Pos& p1, const Pos& p2) { return norm(atan2(p1 / p2, p1 * p2)); }
	int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
	friend bool cmpq(const Pos& a, const Pos& b) { return (a.quad() != b.quad()) ? a.quad() < b.quad() : a / b > 0; }
	bool close(const Pos& p) const { return zero((*this - p).Euc()); }
	friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; }
	friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; }
};
const Pos O = Pos(0, 0);
typedef std::vector<Pos> Polygon;
inline ld cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); }
inline int ccw(const Pos& d1, const Pos& d2, const Pos& d3) {
	ld ret = cross(d1, d2, d3);
	return zero(ret) ? 0 : ret > 0 ? 1 : -1;
}
Pos intersection(const Pos& p1, const Pos& p2, const Pos& q1, const Pos& q2) {
	ld a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
	return (p1 * a2 + p2 * a1) / (a1 + a2);
}
struct Circle {
	Pii c;
	int r;
	Circle(Pii C = Pii(0, 0), int R = 0) : c(C), r(R) {}
	bool operator == (const Circle& C) const { return c == C.c && r == C.r; }
	bool operator != (const Circle& C) const { return !(*this == C); }
	bool operator < (const Circle& q) const {
		ll dist = sq((ll)r - q.r);
		return r < q.r && dist >= (c - q.c).Euc();
	}
	bool operator > (const Pii& p) const { return r > (c - p).mag(); }
	bool operator >= (const Pii& p) const { return r + TOL > (c - p).mag(); }
	bool operator < (const Pii& p) const { return r < (c - p).mag(); }
	Circle operator + (const Circle& C) const { return { c + C.c, r + C.r }; }
	Circle operator - (const Circle& C) const { return { c - C.c, r - C.r }; }
	ld H(const ld& th) const { return sin(th) * c.x + cos(th) * c.y + r; }//coord trans | check right
	inline ld A() const { return 1. * r * r * PI; }
	friend std::istream& operator >> (std::istream& is, Circle& c) { is >> c.c >> c.r; return is; }
	friend std::ostream& operator << (std::ostream& os, const Circle& c) { os << c.c << " " << c.r; return os; }
};
inline bool cmpr(const Circle& p, const Circle& q) { return p.r > q.r; }//sort descending order
typedef std::vector<Circle> Disks;
struct Arc {
	ld lo, hi;// [lo, hi] - radian range of arc, 0 ~ 2pi
	int i;
	Arc(ld LO = 0, ld HI = 0, int I = -1) : lo(LO), hi(HI), i(I) {}
	bool operator < (const Arc& a) const { return zero(lo - a.lo) ? hi < a.hi : lo < a.lo; }
	inline ld area(const Circle& cen) const { return (hi - lo) * cen.r * cen.r; }
	inline ld green(const Circle& cen) const {
		Pos LO = -Pos(1, 0).rot(lo) * cen.r;
		Pos HI = Pos(1, 0).rot(hi) * cen.r;
		Pos vec = Pos(cen.c.x, cen.c.y);
		return (area(cen) + vec / (HI + LO)) * .5;
		//int x = cen.c.x, y = cen.c.y, r = cen.r;
		//ld b = 1. * x * r * (sin(hi) - sin(lo));
		//ld d = 1. * y * r * (cos(lo) - cos(hi));
		//return (area(cen) + b + d) * .5;
	}
	friend std::ostream& operator << (std::ostream& os, const Arc& l) { os << l.lo << " " << l.hi; return os; }
};
typedef std::vector<Arc> Arcs;
Arcs VA[LEN];
bool V[LEN];
bool P[LEN];
inline std::vector<Pos> intersection(const Circle& a, const Circle& b) {
	Pii ca = a.c, cb = b.c;
	Pii vec = cb - ca;
	ll ra = a.r, rb = b.r;
	ld distance = vec.mag();
	ld rd = vec.rad();

	if (vec.Euc() >= sq(ra + rb)) return {};
	if (vec.Euc() <= sq(ra - rb)) return {};

	//2nd hyprblc law of cos
	ld X = (ra * ra - rb * rb + vec.Euc()) / (2 * distance * ra);
	if (X < -1) X = -1;
	if (X > 1) X = 1;
	ld h = acos(X);
	if (zero(h)) return {};
	return { Pos(norm(rd - h), norm(rd + h)) };
}
inline void arc_init(std::vector<Circle>& VC) {
	std::sort(VC.begin(), VC.end(), cmpr);
	int sz = VC.size();
	for (int i = 0; i < sz; i++) {
		for (int j = 0; j < sz; j++) {
			Pii vec = VC[i].c - VC[j].c;
			int ra = VC[i].r, rb = VC[j].r;
			if (vec.Euc() >= sq(ra + rb)) continue;
			if (vec.Euc() <= sq(ra - rb)) continue;
	
			auto inx = intersection(VC[i], VC[j]);
			if (!inx.size()) continue;
			ld lo = inx[0].x;
			ld hi = inx[0].y;

			Arc a1, a2;
			if (lo > hi) {
				a1 = Arc(lo, 2 * PI, j);
				a2 = Arc(0, hi, j);
				VA[i].push_back(a1);
				VA[i].push_back(a2);
			}
			else {
				a1 = Arc(lo, hi, j);
				VA[i].push_back(a1);
			}
		}

		std::sort(VA[i].begin(), VA[i].end());
		VA[i].push_back(Arc(2 * PI, 2 * PI, -2));
	}
	return;
}
inline ld union_except_x(const std::vector<Circle>& VC, const int& x = -1) {
	memset(V, 0, sizeof V);
	int sz = VC.size();
	for (int i = 0; i < sz; i++) {
		if (i == x || V[i]) continue;
		for (int j = 0; j < sz; j++) {
			if (j == x || j == i || V[j]) continue;
			if (VC[j] < VC[i] || VC[j] == VC[i]) { V[j] = 1; continue; }
		}
	}
	ld union_area = 0;
	for (int i = 0; i < sz; i++) {
		if (i == x || V[i]) continue;
		ld hi = 0;
		for (const Arc& a : VA[i]) {
			if (a.i == x || V[a.i]) continue;
			if (a.lo > hi) union_area += Arc(hi, a.lo).green(VC[i]), hi = a.hi;
			else hi = std::max(hi, a.hi);
		}
	}
	return union_area;
}
inline void solve() {
	std::cin.tie(0)->sync_with_stdio(0);
	std::cout.tie(0);
	int ret = 0;
	std::cin >> N;
	Disks VC(N);
	for (Circle& c : VC) std::cin >> c;
	arc_init(VC);
	int sz = VC.size();
	ld U = union_except_x(VC);
	for (int x = 0; x < sz; x++) {
		if (V[x]) { ret++; continue; }
		ld A = union_except_x(VC, x);
		ret += zero(U - A);//no-dabwon
	}
	std::cout << ret << "\n";
}
int main() { solve(); return 0; }//boj10900 lonely mdic

/*

3
3 0 4
-3 0 4
0 0 2

5
0 0 1
1 1 1
-1 1 1
-1 -1 1
1 -1 1

9
3 0 4
-3 0 4
0 0 2
9 0 4
6 0 2
15 0 4
12 0 2
21 0 4
18 0 2

5
1000 1000 1415
1000 -1000 1415
-1000 -1000 1415
-1000 1000 1415
0 0 1

5
1000 1000 1414
1000 -1000 1414
-1000 -1000 1414
-1000 1000 1414
0 0 1

5
0 0 1
2 0 1
4 0 1
6 0 1
8 0 1

5
0 0 1
1 0 1
2 0 1
3 0 1
4 0 1

8
-1 2 1000
-2 1 1000
-2 -1 1000
-1 -2 1000
1 -2 1000
2 -1 1000
2 1 1000
1 2 1000

5
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

*/
# Verdict Execution time Memory Grader output
1 Correct 3 ms 344 KB Output is correct
2 Correct 4 ms 348 KB Output is correct
3 Correct 15 ms 344 KB Output is correct
4 Correct 15 ms 560 KB Output is correct
5 Correct 29 ms 520 KB Output is correct
6 Correct 34 ms 348 KB Output is correct
7 Correct 68 ms 3052 KB Output is correct
8 Correct 22 ms 3932 KB Output is correct
9 Correct 14 ms 3164 KB Output is correct
10 Correct 34 ms 3676 KB Output is correct
11 Correct 63 ms 1884 KB Output is correct
12 Correct 23 ms 856 KB Output is correct
13 Correct 12 ms 1628 KB Output is correct
14 Correct 47 ms 596 KB Output is correct
15 Correct 26 ms 344 KB Output is correct
16 Correct 12 ms 2392 KB Output is correct