#include <bits/stdc++.h>
using namespace std;
#define dbg(x) //x
#define prt(x) dbg(cerr << x)
#define pv(x) dbg(cerr << #x << " = " << x << '\n')
#define pv2(x) dbg(cerr << #x << " = " << x.first << ',' << x.second << '\n')
#define parr(x) dbg(prt(#x << " = { "); for (auto y : x) prt(y << ' '); prt("}\n");)
#define parr2(x) dbg(prt(#x << " = { "); for (auto [y, z] : x) prt(y << ',' << z << " "); prt("}\n");)
#define parr2d(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr(arr);} prt('\n'));
#define parr2d2(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr2(arr);} prt('\n'));
const int inf = 2e9 + 5;
/*
o(n^2):
for (each event)
add edge from this one to every range that contains it
and basically
you want to find the shortest path from i to j
note - if e[i] = e[j], there will be cycles in the graph
but these aren't that useful unless you want to jump directly from i to j
so we will be dealing with a dag here
so you wouldn't want to switch from anything with the same end
so e[i] must strictly increase
note that if no contained pairs
and you do have a CONTIGIOUS range of indices that you can hop to next
how to solve in n^2?
precomputing answers?
just get all the edges
maybe run n dijkstra? is this different bc dag?
for (cur node)
for (next node)
if (reachable)
for (each node)
dist[node][next] = min(dist[node][next], dist[node][cur] + 1)
or maybe just run a dijkstra if you have all the edges and n <= 1000 and q <= 100
greedy?
if you CANNOT reach the dest from here, you should go to the latest ending event
so that it starts before the dest ends
what about when does it end
if it ends before the dest ends that's fine
it has to end after the dest starts
it cannot end after the dest ends
NOTE: while we must have s[j] <= e[i] we don't have to maximize or minimize it
then we want to pick the maximum possible e[j] <= e[d]
so we can make like a pref max for end values based on start values have to be less
than or equal to whatever
but that won't factor in the "e[j] <= e[d]"
but that's a good reformulation
given max start, what is max e[j] <= e[d]?
we should be able to do queries offline then
so that for each query
we make some new values valid
subtask 3?
for (each end - inc)
upd the end
for (each start - dec)
if start == end
dp[i][d] = 0
if can go from start to end
dp[i][d] = 1
find max s[j] <= e[i], e[j] <= e[d]
dp[i][d] = dp[i][max] + 1
subtask 5?
keep the greedy
still always wanna go to the next event with maximal e[j] <= e[d]
note that s and e are in the same order
so basically
from the start
how many moves can you make while e[j] < s[d]
*/
template <class T> struct SegTree {
int n;
vector<T> st;
T init;
SegTree (int x, T y) {
n = x;
init = y;
st.resize(2 * n, y);
}
void upd(int k, T x) {
k += n;
st[k] = x;
for (k /= 2; k >= 1; k /= 2) {
st[k] = max(st[k * 2], st[k * 2 + 1]);
}
}
T quer(int l, int r) {
l += n; r += n;
T res = init;
while (r >= l && l >= 1) {
if (l % 2 == 1) res = max(res, st[l++]);
if (r % 2 == 0) res = max(res, st[r--]);
l /= 2; r /= 2;
}
return res;
}
};
int main() {
ios::sync_with_stdio(0); cin.tie(0);
int n, q;
cin >> n >> q;
vector<array<int, 3>> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i][0] >> a[i][1];
a[i][2] = i;
}
sort(a.begin(), a.end(), [&] (array<int, 3> x, array<int, 3> y) {
return x[1] < y[1] || (x[1] == y[1] && x[0] < y[0]);
});
bool cont = false;
int mx0 = 0;
for (int i = 0; i < n; i++) {
mx0 = max(mx0, a[i][0]);
if (mx0 != a[i][0]) {
cont = true;
break;
}
}
parr2d(a);
vector<int> at(n);
for (int i = 0; i < n; i++) {
at[a[i][2]] = i;
}
if (q <= 100) {
vector<array<int, 3>> quer(q);
for (int i = 0; i < q; i++) {
cin >> quer[i][0] >> quer[i][1];
quer[i][0]--; quer[i][1]--;
quer[i][0] = at[quer[i][0]];
quer[i][1] = at[quer[i][1]];
quer[i][2] = i;
}
sort(quer.begin(), quer.end(), [&] (array<int, 3> x, array<int, 3> y) {
return x[1] < y[1];
});
parr2d(quer);
vector<int> ans(q, -1);
SegTree<int> pmx(n, 0);
vector<int> s(n);
for (int i = 0; i < n; i++) {
s[i] = a[i][0];
}
sort(s.begin(), s.end());
vector<int> ords(n);
iota(ords.begin(), ords.end(), 0);
sort(ords.begin(), ords.end(), [&] (int x, int y) {
return a[x][0] < a[y][0];
});
vector<int> ats(n);
for (int i = 0 ; i < n; i++) {
ats[ords[i]] = i;
}
int j = 0;
for (int i = 0; i < q; i++) {
if (a[quer[i][0]][1] > a[quer[i][1]][1]) continue;
for (; j < n && a[j][1] <= a[quer[i][1]][1]; j++) {
pmx.upd(ats[j], a[j][1]);
}
if (quer[i][0] == quer[i][1]) {ans[quer[i][2]] = 0; continue;}
int rb = a[quer[i][0]][1], res = 0;
while (rb < a[quer[i][1]][0]) { // if rb < a[quer[i][1]][0], then you can't go to whatever the end is
int k = upper_bound(s.begin(), s.end(), rb) - s.begin() - 1;
int mx = pmx.quer(0, k);
if (mx == rb) {
res = -2;
break;
}
rb = mx;
res++;
}
res++;
ans[quer[i][2]] = res;
}
for (int i = 0; i < q; i++) {
if (ans[i] == -1) {
cout << "impossible\n";
} else {
cout << ans[i] << '\n';
}
}
} else if (n <= 5000) {
/*
subtask 3?
for (each end - inc)
upd the end
for (each start - dec)
if start == end
dp[i][d] = 0
if can go from start to end
dp[i][d] = 1
find max s[j] <= e[i], e[j] <= e[d]
dp[i][d] = dp[i][max] + 1
*/
pv(n);
array<int, 2> init = {0, 0};
SegTree<array<int, 2>> pmx(n, init);
vector<int> s(n);
for (int i = 0; i < n; i++) {
s[i] = a[i][0];
}
sort(s.begin(), s.end());
vector<int> ords(n);
iota(ords.begin(), ords.end(), 0);
sort(ords.begin(), ords.end(), [&] (int x, int y) {
return a[x][0] < a[y][0];
});
vector<int> ats(n);
for (int i = 0 ; i < n; i++) {
ats[ords[i]] = i;
}
vector<int> lb(n);
for (int i = 0; i < n; i++) {
lb[i] = upper_bound(s.begin(), s.end(), a[i][1]) - s.begin() - 1;
}
vector<vector<int>> ans(n, vector<int>(n, -1));
for (int r = 0; r < n; r++) {
pmx.upd(ats[r], {a[r][1], r});
for (int l = n - 1; l >= 0; l--) {
if (a[l][1] > a[r][1]) {
ans[l][r] = -1;
} else if (l == r) {
ans[l][r] = 0;
} else if (a[l][1] >= a[r][0]) {
ans[l][r] = 1;
} else {
pv(l); pv(r);
array<int, 2> best = pmx.quer(0, lb[l]);
parr(best);
if (ans[best[1]][r] == -1) {
ans[l][r] = -1;
} else {
ans[l][r] = ans[best[1]][r] + 1;
}
}
}
}
while (q--) {
int l, r;
cin >> l >> r;
l--; r--;
l = at[l]; r = at[r];
if (ans[l][r] == -1) {
cout << "impossible\n";
} else {
cout << ans[l][r] << '\n';
}
}
} else if (!cont) {
pv(cont);
vector<int> to(n), s(n);
for (int i = 0; i < n; i++) {
s[i] = a[i][0];
}
for (int i = 0; i < n; i++) {
to[i] = upper_bound(s.begin(), s.end(), a[i][1]) - s.begin() - 1;
}
vector<vector<int>> lift(n, vector<int>(20, 0));
for (int i = 0; i < n; i++) {
lift[i][0] = to[i];
}
for (int j = 1; j < 20; j++) {
for (int i = 0; i < n; i++) {
lift[i][j] = lift[lift[i][j - 1]][j - 1];
}
}
while (q--) {
int l, r;
cin >> l >> r;
l--; r--;
l = at[l]; r = at[r];
if (a[l][1] > a[r][1]) {
cout << "impossible\n";
} else if (l == r) {
cout << 0 << '\n';
} else if (a[l][1] == a[r][1]) {
cout << 1 << '\n';
} else {
int ans = 0;
for (int j = 19; j >= 0; j--) {
if (a[lift[l][j]][1] < a[r][0]) {
ans += 1 << j;
l = lift[l][j];
}
}
if (a[l][1] < a[r][0]) {
l = lift[l][0];
ans++;
}
if (a[l][1] >= a[r][0]) {
cout << ans + 1 << '\n';
} else {
cout << "impossible\n";
}
}
}
} else {
/*
binary lifting probably?
where are you going
the thing on the right with lowest left value, hope it's this
except you can have some annoying 2-cycles or smth
so maybe calc dist to nearest 2cyc
*/
vector<int> to(n, n);
int mnl = inf, ind = n;
for (int i = n - 1; i >= 0; i--) {
if (mnl <= a[i][1]) {
to[i] = ind;
}
if (a[i][0] < mnl) {
mnl = a[i][0];
ind = i;
}
}
vector<bool> cyc(n, false);
for (int i = 1; i < n; i++) {
if (a[i][1] == a[i - 1][1]) {
pv(i);
to[i - 1] = i;
to[i] = i - 1;
cyc[i - 1] = cyc[i] = true;
if (i > 2) assert(a[i - 2][1] != a[i][1]);
}
}
vector<vector<int>> lift(n, vector<int>(20, 0));
for (int i = 0; i < n; i++) {
lift[i][0] = to[i];
}
for (int j = 1; j < 20; j++) {
for (int i = 0; i < n; i++) {
lift[i][j] = (lift[i][j - 1] == n ? n : lift[lift[i][j - 1]][j - 1]);
}
}
parr(to);
while (q--) {
int l, r;
cin >> l >> r;
l--; r--;
l = at[l]; r = at[r];
int ans = 0;
for (int j = 19; j >= 0; j--) {
if (lift[l][j] < n && !cyc[lift[l][j]] && lift[l][j] <= r) {
l = lift[l][j];
ans += (1 << j);
}
}
if (cyc[r]) {
for (int i = 0; i < 2; i++) {
l = to[l];
ans++;
if (l == r) break;
}
}
if (l != r) {
cout << "impossible\n";
} else {
cout << ans << '\n';
}
}
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
64 ms |
14928 KB |
Output is correct |
3 |
Correct |
66 ms |
18000 KB |
Output is correct |
4 |
Correct |
75 ms |
18288 KB |
Output is correct |
5 |
Correct |
64 ms |
17744 KB |
Output is correct |
6 |
Correct |
63 ms |
17744 KB |
Output is correct |
7 |
Correct |
64 ms |
17848 KB |
Output is correct |
8 |
Correct |
58 ms |
18512 KB |
Output is correct |
9 |
Correct |
66 ms |
18508 KB |
Output is correct |
10 |
Correct |
81 ms |
18512 KB |
Output is correct |
11 |
Correct |
115 ms |
18052 KB |
Output is correct |
12 |
Correct |
55 ms |
17744 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
8 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
2 ms |
348 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
344 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
8 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
2 ms |
348 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
344 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
8 ms |
496 KB |
Output is correct |
13 |
Correct |
1 ms |
348 KB |
Output is correct |
14 |
Correct |
2 ms |
348 KB |
Output is correct |
15 |
Correct |
1 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
348 KB |
Output is correct |
17 |
Correct |
1 ms |
348 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Correct |
630 ms |
98984 KB |
Output is correct |
20 |
Correct |
950 ms |
99096 KB |
Output is correct |
21 |
Correct |
960 ms |
99424 KB |
Output is correct |
22 |
Correct |
798 ms |
99408 KB |
Output is correct |
23 |
Correct |
566 ms |
99244 KB |
Output is correct |
24 |
Correct |
334 ms |
99156 KB |
Output is correct |
25 |
Correct |
950 ms |
98988 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
8 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
2 ms |
348 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
344 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
8 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
344 KB |
Output is correct |
14 |
Correct |
1 ms |
348 KB |
Output is correct |
15 |
Correct |
1 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
348 KB |
Output is correct |
17 |
Correct |
1 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
348 KB |
Output is correct |
19 |
Correct |
1112 ms |
3920 KB |
Output is correct |
20 |
Correct |
233 ms |
4176 KB |
Output is correct |
21 |
Correct |
39 ms |
4172 KB |
Output is correct |
22 |
Correct |
98 ms |
4184 KB |
Output is correct |
23 |
Correct |
30 ms |
3932 KB |
Output is correct |
24 |
Correct |
36 ms |
3972 KB |
Output is correct |
25 |
Correct |
21 ms |
4096 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
64 ms |
14928 KB |
Output is correct |
2 |
Correct |
65 ms |
18000 KB |
Output is correct |
3 |
Correct |
73 ms |
18004 KB |
Output is correct |
4 |
Correct |
64 ms |
18600 KB |
Output is correct |
5 |
Correct |
81 ms |
18384 KB |
Output is correct |
6 |
Correct |
89 ms |
18180 KB |
Output is correct |
7 |
Correct |
85 ms |
18256 KB |
Output is correct |
8 |
Correct |
73 ms |
18640 KB |
Output is correct |
9 |
Correct |
30 ms |
5712 KB |
Output is correct |
10 |
Correct |
64 ms |
17992 KB |
Output is correct |
11 |
Correct |
63 ms |
17744 KB |
Output is correct |
12 |
Correct |
64 ms |
18008 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
64 ms |
14928 KB |
Output is correct |
3 |
Correct |
66 ms |
18000 KB |
Output is correct |
4 |
Correct |
75 ms |
18288 KB |
Output is correct |
5 |
Correct |
64 ms |
17744 KB |
Output is correct |
6 |
Correct |
63 ms |
17744 KB |
Output is correct |
7 |
Correct |
64 ms |
17848 KB |
Output is correct |
8 |
Correct |
58 ms |
18512 KB |
Output is correct |
9 |
Correct |
66 ms |
18508 KB |
Output is correct |
10 |
Correct |
81 ms |
18512 KB |
Output is correct |
11 |
Correct |
115 ms |
18052 KB |
Output is correct |
12 |
Correct |
55 ms |
17744 KB |
Output is correct |
13 |
Correct |
0 ms |
344 KB |
Output is correct |
14 |
Correct |
1 ms |
348 KB |
Output is correct |
15 |
Correct |
8 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
348 KB |
Output is correct |
17 |
Correct |
2 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
348 KB |
Output is correct |
19 |
Correct |
1 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
344 KB |
Output is correct |
21 |
Correct |
0 ms |
348 KB |
Output is correct |
22 |
Correct |
0 ms |
348 KB |
Output is correct |
23 |
Correct |
0 ms |
348 KB |
Output is correct |
24 |
Correct |
8 ms |
496 KB |
Output is correct |
25 |
Correct |
1 ms |
348 KB |
Output is correct |
26 |
Correct |
2 ms |
348 KB |
Output is correct |
27 |
Correct |
1 ms |
348 KB |
Output is correct |
28 |
Correct |
1 ms |
348 KB |
Output is correct |
29 |
Correct |
1 ms |
348 KB |
Output is correct |
30 |
Correct |
0 ms |
348 KB |
Output is correct |
31 |
Correct |
630 ms |
98984 KB |
Output is correct |
32 |
Correct |
950 ms |
99096 KB |
Output is correct |
33 |
Correct |
960 ms |
99424 KB |
Output is correct |
34 |
Correct |
798 ms |
99408 KB |
Output is correct |
35 |
Correct |
566 ms |
99244 KB |
Output is correct |
36 |
Correct |
334 ms |
99156 KB |
Output is correct |
37 |
Correct |
950 ms |
98988 KB |
Output is correct |
38 |
Correct |
0 ms |
348 KB |
Output is correct |
39 |
Correct |
0 ms |
348 KB |
Output is correct |
40 |
Correct |
8 ms |
348 KB |
Output is correct |
41 |
Correct |
1 ms |
344 KB |
Output is correct |
42 |
Correct |
1 ms |
348 KB |
Output is correct |
43 |
Correct |
1 ms |
348 KB |
Output is correct |
44 |
Correct |
1 ms |
348 KB |
Output is correct |
45 |
Correct |
1 ms |
348 KB |
Output is correct |
46 |
Correct |
1 ms |
348 KB |
Output is correct |
47 |
Correct |
1112 ms |
3920 KB |
Output is correct |
48 |
Correct |
233 ms |
4176 KB |
Output is correct |
49 |
Correct |
39 ms |
4172 KB |
Output is correct |
50 |
Correct |
98 ms |
4184 KB |
Output is correct |
51 |
Correct |
30 ms |
3932 KB |
Output is correct |
52 |
Correct |
36 ms |
3972 KB |
Output is correct |
53 |
Correct |
21 ms |
4096 KB |
Output is correct |
54 |
Correct |
64 ms |
14928 KB |
Output is correct |
55 |
Correct |
65 ms |
18000 KB |
Output is correct |
56 |
Correct |
73 ms |
18004 KB |
Output is correct |
57 |
Correct |
64 ms |
18600 KB |
Output is correct |
58 |
Correct |
81 ms |
18384 KB |
Output is correct |
59 |
Correct |
89 ms |
18180 KB |
Output is correct |
60 |
Correct |
85 ms |
18256 KB |
Output is correct |
61 |
Correct |
73 ms |
18640 KB |
Output is correct |
62 |
Correct |
30 ms |
5712 KB |
Output is correct |
63 |
Correct |
64 ms |
17992 KB |
Output is correct |
64 |
Correct |
63 ms |
17744 KB |
Output is correct |
65 |
Correct |
64 ms |
18008 KB |
Output is correct |
66 |
Correct |
0 ms |
348 KB |
Output is correct |
67 |
Correct |
67 ms |
18104 KB |
Output is correct |
68 |
Correct |
68 ms |
18240 KB |
Output is correct |
69 |
Correct |
81 ms |
18004 KB |
Output is correct |
70 |
Correct |
64 ms |
17844 KB |
Output is correct |
71 |
Correct |
61 ms |
17748 KB |
Output is correct |
72 |
Correct |
65 ms |
17740 KB |
Output is correct |
73 |
Correct |
55 ms |
18312 KB |
Output is correct |
74 |
Correct |
65 ms |
18644 KB |
Output is correct |
75 |
Correct |
80 ms |
18396 KB |
Output is correct |
76 |
Correct |
79 ms |
18116 KB |
Output is correct |
77 |
Correct |
55 ms |
17736 KB |
Output is correct |
78 |
Correct |
0 ms |
348 KB |
Output is correct |
79 |
Correct |
8 ms |
348 KB |
Output is correct |
80 |
Correct |
1 ms |
348 KB |
Output is correct |
81 |
Correct |
2 ms |
348 KB |
Output is correct |
82 |
Correct |
1 ms |
348 KB |
Output is correct |
83 |
Correct |
1 ms |
348 KB |
Output is correct |
84 |
Correct |
1 ms |
348 KB |
Output is correct |
85 |
Correct |
1 ms |
348 KB |
Output is correct |
86 |
Correct |
615 ms |
100120 KB |
Output is correct |
87 |
Correct |
948 ms |
100252 KB |
Output is correct |
88 |
Correct |
983 ms |
100436 KB |
Output is correct |
89 |
Correct |
795 ms |
100420 KB |
Output is correct |
90 |
Correct |
581 ms |
100180 KB |
Output is correct |
91 |
Correct |
329 ms |
100288 KB |
Output is correct |
92 |
Correct |
949 ms |
99924 KB |
Output is correct |
93 |
Correct |
1078 ms |
5896 KB |
Output is correct |
94 |
Correct |
232 ms |
5132 KB |
Output is correct |
95 |
Correct |
40 ms |
5808 KB |
Output is correct |
96 |
Correct |
99 ms |
5932 KB |
Output is correct |
97 |
Correct |
30 ms |
5716 KB |
Output is correct |
98 |
Correct |
35 ms |
5716 KB |
Output is correct |
99 |
Correct |
27 ms |
5088 KB |
Output is correct |
100 |
Correct |
91 ms |
18260 KB |
Output is correct |
101 |
Correct |
85 ms |
18256 KB |
Output is correct |
102 |
Correct |
73 ms |
18508 KB |
Output is correct |
103 |
Correct |
63 ms |
18000 KB |
Output is correct |
104 |
Correct |
66 ms |
17772 KB |
Output is correct |
105 |
Correct |
65 ms |
17988 KB |
Output is correct |
106 |
Runtime error |
23 ms |
5976 KB |
Execution killed with signal 6 |
107 |
Halted |
0 ms |
0 KB |
- |