Submission #978446

#TimeUsernameProblemLanguageResultExecution timeMemory
978446RedGrey1993Robot (JOI21_ho_t4)C++17
100 / 100
569 ms60944 KiB
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &pa) { is >> pa.first >> pa.second; return is; } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << "(" << pa.first << "," << pa.second << ")"; return os; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template <typename T> void resize_array(vector<T> &vec, int len) { vec.resize(len); } template <typename T, typename... Args> void resize_array(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) resize_array(v, args...); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } mt19937 mrand(random_device{}()); int rnd(int x) { return mrand() % x; } // 函数名后面加 ll 就可以计算 long long类型对应的结果 // __builtin_ffs(x) // 返回x中最后一个为1的位是从后向前的第几位 // __builtin_popcount(x) // x中1的个数 // __builtin_ctz(x) // x末尾0的个数。x=0时结果未定义。 // __builtin_clz(x) // x前导0的个数。x=0时结果未定义。 // __builtin_parity(x) // x中1的奇偶性。 #define highest_bit1_index(x) (31 - __builtin_clz(k)) #define highest_bit1_index_ll(x) (63 - __builtin_clzll(k)) #define rep(i, a, n) for (int i = a; i < (n); i++) #define per(i, a, n) for (int i = (n)-1; i >= a; i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(), (x).end() #define fi first #define se second #define sz(x) ((int)(x).size()) typedef vector<int> vi; typedef long long ll; typedef unsigned int uint; typedef unsigned long long ull; typedef pair<int, int> pii; typedef double db; #if DEBUG #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; #else #define dbg(x) #endif template <typename T> class Dijkstra { public: struct Edge { int to; int color; T cost; friend ostream &operator<<(ostream &os, const Edge &r) { return os << "<" << r.to << "," << r.cost << ">"; } }; Dijkstra(vector<vector<Edge>> &edges) : edges_(edges) {} T ShortestPath(int start) { int n = sz(edges_); distance_.resize(edges_.size()); fill(distance_.begin(), distance_.end(), numeric_limits<T>::max()); distance_[start] = 0; prev_vertex_.resize(edges_.size()); fill(prev_vertex_.begin(), prev_vertex_.end(), -1); // <min dis, vertex> using P = pair<T, int>; // make priority queue sort smaller integer first priority_queue<P, vector<P>, greater<P>> que; que.push(P(distance_[start], start)); vector<map<int,T>> min_cost2(n); while (!que.empty()) { P p = que.top(); que.pop(); int v = p.second; if (distance_[v] < p.first) continue; for (int i = 0; i < edges_[v].size(); ++i) { Edge e = edges_[v][i]; if (!min_cost2[e.to].count(e.color)) min_cost2[e.to][e.color] = distance_[v]; T dis_v2 = distance_[v]; if (min_cost2[v].count(e.color)) dis_v2 = min_cost2[v][e.color]; T min_dis = min(dis_v2 + psum_[v][e.color] - e.cost, distance_[v] + e.cost); if (distance_[e.to] > min_dis) { distance_[e.to] = min_dis; prev_vertex_[e.to] = v; que.push(P(distance_[e.to], e.to)); } } } if (distance_[n-1] != numeric_limits<T>::max()) return distance_[n-1]; else return -1; } // get min path to t vector<int> GetPath(int t) { vector<int> path; for (; t != -1; t = prev_vertex_[t]) path.push_back(t); reverse(path.begin(), path.end()); return path; } // private: vector<vector<Edge>> &edges_; vector<T> distance_; vector<map<int,T>> psum_; // node -> color -> p vector<int> prev_vertex_; // for path restore }; using DijkstraT = Dijkstra<long long>; using Edge = DijkstraT::Edge; class Solution { public: void Solve() { int n,m; while(cin>>n>>m) { vector<vector<Edge>> edges(n); DijkstraT dj(edges); dj.psum_.resize(n); int a,b,c,p; rep(i,0,m) { cin>>a>>b>>c>>p; a--; b--; edges[a].emplace_back(Edge{b,c,p}); edges[b].emplace_back(Edge{a,c,p}); dj.psum_[a][c] += p; dj.psum_[b][c] += p; } cout << dj.ShortestPath(0) << "\n"; // break; } cout.flush(); } private: }; // # define FILE_IO 1 void set_io(const string &name = "") { ios::sync_with_stdio(false); cin.tie(nullptr); #if FILE_IO if (!name.empty()) { freopen((name + ".in").c_str(), "r", stdin); freopen((name + ".out").c_str(), "w", stdout); } #endif } int main() { set_io("input"); Solution().Solve(); return 0; }

Compilation message (stderr)

Main.cpp: In instantiation of 'T Dijkstra<T>::ShortestPath(int) [with T = long long int]':
Main.cpp:141:38:   required from here
Main.cpp:87:25: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<Dijkstra<long long int>::Edge, std::allocator<Dijkstra<long long int>::Edge> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   87 |       for (int i = 0; i < edges_[v].size(); ++i) {
      |                       ~~^~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...